Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015

Graphene Decorated with MoS₂ Nanosheets: Synergetic Energy Storage composite electrode for Supercapacitor Applications

R. Thangappan^a, S. Kalaiselvam^b, A. Elayaperumal^c, R. Jayavel^{a*}, M. Arivanandhan^a, R. Karthikevan^e and Y. Havakawa^{d, e}

^aCentre for Nanoscience and Technology, Anna University, Chennai -25, Tamil Nadu, India ^bDepartment of Applied Science and Technology, Anna University, Chennai -25, Tamil Nadu, India ^cDepartment of Mechanical Engineering, Anna University, Chennai-25, Tamil Nadu, India ^dResearch Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka – 432-8011, Japan ^eGraduate School of Science and Technology, Shizuoka University, 3-5-1, Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8011, Japan

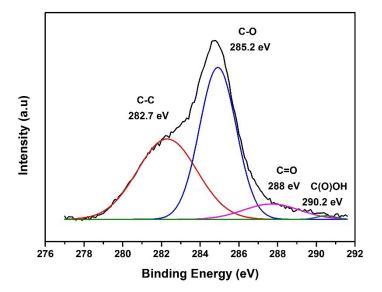


Figure S1. High-resolution C1s spectra of GO.

The high-resolution C1s XPS spectrum of the GO sheets showed a sharp peak at 282.7 eV that corresponded to C-C bonds of carbon atoms in a conjugated honey-comb lattice. Peaks at 285.2, 288 and 290.2 eV could be attributed to different C-O bonding configurations due to the harsh oxidation and destruction of the sp² atomic structure of graphite [1].

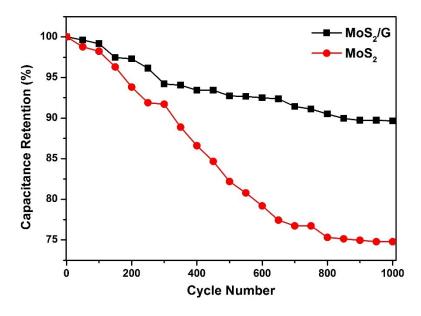


Figure S2.

Capacitive retention of MoS_2/G composite and pure MoS_2 .

Reference

[1] Surajit Some, Seok-Man Ho, Pooja Dua, Eunhee Hwang, Young Hun Shin, HeeJoun Yoo, Jong-Sun Kang, Dong-ki Lee, and Hyoyoung Lee, ACS Nano 6, 7151–7161(2012).