Supporting Information

Synthesis of a Rhodium(I) Germyl Complex: A Useful Tool for C–H and C–F Bond Activation Reactions

Theresia Ahrens, Mike Ahrens, Thomas Braun⁺, Beatrice Braun and Roy Herrmann

⁺Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Straße 2, D-12489 Berlin, Germany. E-mail: thomas.braun@chemie.hu-berlin.de

Computational details

In order to determine the IR absorption bands of complex $[Rh(GePh_3)(H)_2(PEt_3)_3]$ (2) with the help of DFT calculations, the structure of 2 was optimized based on the structure in the solid, which was obtained by a X-ray crystallography analysis. Two absorption bands can be assigned to the metal-bonded hydrido ligands which are in good accordance to the experimental IR-spectrum. For the antisymmetric vibration an absorption band at $\tilde{\nu} = 2062 \text{ cm}^{-1}$ was identified. The symmetric vibration was located at at $\tilde{\nu} = 2108 \text{ cm}^{-1}$. The calculations were run using the Gaussian 09 (Revision D.01) program package^[1] and the B3LYP functional. Rhodium^[2] and Germanium^[3] were described with RECPs and the associated cc-pVDZ basis sets. For all other atoms cc-pVDZ basis sets were used. The calculated structure was identified as a minimum (no negative eigenvalues). The resulting energy was corrected for zero-point energy. Cartesian coordinates for the optimized structure are given below.

0.00574

2 02722

				п	-2.0/20/	0.00574	-2.02/22
Opti	mized car	tesian coo	rdinates for complex	С	-2.76417	1.35091	0.65248
[Rh(0	GePh ₃)(H) ₂ (Pl	Et ₃) ₃] (2) , e	nergies are corrected for	С	-2.75686	2.51879	-0.13595
zero-	point energy	and given in	Hartree:	Н	-2.17127	2.54792	-1.05815
Ener	gv: -2837.44	41091		С	-3.48536	3.65926	0.22259
Rh	0.83605	-0.16250	0.07044	Н	-3.46160	4.54457	-0.41924
Ge	-1 67008	-0 28076	0 14399	С	-4.24095	3.66660	1.39878
н	0.51502	-0.70754	1,51329	Н	-4.80902	4.55510	1.68571
н	0.36774	-1.58080	-0.44905	С	-4.26277	2.52231	2.20078
P	1.04067	0.43960	-2.32078	Н	-4.85122	2.51209	3.12262
P	1 17756	1 99005	1 23067	С	-3.53749	1.38354	1.82897
P	2 89914	-1 36080	0 49682	Н	-3.57803	0.50269	2.47360
Ċ	-2.38156	-1.67647	1.42357	С	-0.09968	1.80463	-2.93556
Ċ	-1.59006	-2.33645	2.37685	Н	-1.11224	1.43165	-2.71517
н	-0 52541	-2 09885	2 44057	Н	0.06245	2.66659	-2.27190
c	-2.12709	-3.29871	3.24232	С	-0.01605	2.24697	-4.40079
н	-1 48162	-3 79440	3 97308	Н	0.96911	2.66760	-4.65835
c	-3 48258	-3 62678	3 17051	Н	-0.76518	3.03160	-4.59926
н	-3.90648	-4.37776	3.84225	Н	-0.22309	1.42138	-5.09867
c	-4 29178	-2 98705	2 22548	С	0.56293	-0.92108	-3.51975
н	-5 35399	-3 23745	2 15491	Н	-0.51156	-1.09730	-3.36412
c	-3.74509	-2.02923	1.36583	Н	0.68331	-0.52218	-4.54066
н	-4.39794	-1.55028	0.63095	С	1.32490	-2.23999	-3.38737
c	-2 59563	-0.92982	-1 53680	н	2.41074	-2.11625	-3.53752
c	-2 39388	-2 26367	-1 94284	Н	0.97154	-2.96143	-4.14234
н	-1.74122	-2.91309	-1.35143	Н	1.16298	-2.68789	-2.39627
c	-3 01746	-2 78904	-3 07867	С	2.67598	0.93395	-3.11208
н	-2.84633	-3.83167	-3.36112	Н	3.36012	0.08590	-2.95927
c	-3.86296	-1.98390	-3.85062	Н	2.50770	1.00172	-4.19992
н	-4 35194	-2 38952	-4 74001	С	3.31760	2.22306	-2.59859
c	-4 08370	-0.65993	-3 46484	Н	2.68423	3.10306	-2.79715
н	-4 75267	-0 02321	-4 05078	Н	4.28696	2.40189	-3.09333
c	-3 46100	-0 14505	-2 31910	Н	3.49948	2.18152	-1.51470
2	3.40100	5.14505	2.31310	С	0.00184	2.32386	2.65457
				н	0.26598	3.30955	3.07202

Н	-0.99793	2.41979	2.20672	ŀ	H	1.65665	-3.34746	1.02497
С	-0.03016	1.28261	3.77466	ŀ	H	2.15592	-3.34468	-0.65058
Н	-0.33419	0.29480	3.39965	(2	3.62213	-4.22907	0.68763
Н	-0.75745	1.58394	4.54633	ŀ	H	4.45213	-4.18792	-0.03429
Н	0.94751	1.17480	4.27248	ŀ	H	3.20082	-5.24711	0.63788
С	2.79247	2.33422	2.13618	H	H	4.04557	-4.10385	1.69698
Н	2.63701	3.22225	2.77184	(2	3.68927	-1.25634	2.19870
Н	2.93254	1.48672	2.82482	ŀ	H	4.56764	-1.92064	2.20702
С	4.03997	2.52379	1.27268	ŀ	H	4.07794	-0.23134	2.30736
Н	4.22370	1.65558	0.62195	(2	2.76814	-1.60340	3.37064
Н	4.93433	2.66114	1.90325	ŀ	H	1.88876	-0.94547	3.40600
Н	3.95917	3.41078	0.62452	ŀ	H	3.30959	-1.50431	4.32609
С	0.94659	3.57190	0.24115	ŀ	H	2.40150	-2.64050	3.30784
Н	1.62594	3.49152	-0.62176	(2	4.40287	-1.13651	-0.62849
Н	-0.07560	3.49520	-0.16161	ŀ	H	4.14658	-1.68470	-1.55156
С	1.13364	4.92638	0.93375	ŀ	H	4.40296	-0.07137	-0.90533
Н	0.41718	5.07478	1.75577	(2	5.80626	-1.52477	-0.14497
Н	0.97121	5.74481	0.21243	ŀ	H	6.12621	-0.91284	0.71267
Н	2.14848	5.05283	1.34340	ŀ	H	6.54031	-1.36032	-0.95187
С	2.53278	-3.19937	0.37350	ŀ	H	5.87790	-2.58013	0.15407

DFT-derived structures and energies for compounds 6a-6d:

Figure 2. DFT-optimized structures of complex $[Rh(GePh_3)(H)(CH_3)(PEt_3)_2]$ (**6 a-d**) and their energies. The hydrogen atoms of the germyl ligand as well as of the phosphine ligands have been omitted for clarity.

Computational details for compounds **6a-6d** are given in the main text.

Optimized cartesian coordinates for complex $[Rh(GePh_3)(H)(CH_3)(PEt_3)_2]$ (6a), energies are corrected for zero-point energy and given in Hartree:

Energy: -2297.913066

Rh	1.07791	1.10933	0.18155
С	2.46639	2.37089	1.16357
н	2.69219	1.83484	2.09188
н	2.03749	3.33338	1.43157
н	3.40820	2.56411	0.65292
н	1.78175	1.66832	-1.03571
Ge	-0.87210	-0.68670	-0.07134
с	-1.11869	-1.43343	1.78563
C	-0.60643	-2.28882	-1.26162
C	-2.80844	-0.23422	-0.45973
c	-0 46591	-0.82535	2 87267
c	-1 99562	-2 49628	2 08159
c	-0 65998	-1 25406	1 19237
c	-1 52214	-7 27171	4.15257
c	-1.32214	-2.32121	4.43490 2.2022E
C C	-2.19100	-2.94097	5.59555
C C	-0.41347	-3.59579	-0.77544
C	-0.33854	-3.18831	-3.53117
C	-0.15531	-4.47792	-3.02180
C	-0.18869	-4.67568	-1.63904
С	-0.55106	-2.11456	-2.66016
С	-3.63623	0.23853	0.57862
С	-3.39129	-0.34277	-1.73696
С	-4.72517	0.01302	-1.97054
С	-4.97050	0.59747	0.35458
С	-5.52139	0.49057	-0.92571
Н	-2.87573	-3.77063	3.58978
н	-0.13875	-0.75382	5.01313
н	-1.67789	-2.66472	5.48061
н	-2.54995	-2.98102	1.27355
н	0.21136	0.01815	2.69066
н	-0.43767	-3.78399	0.30039
н	-0.04255	-5.67794	-1.22654
н	-0.30928	-3.01622	-4.61067
н	0.01502	-5.31982	-3.69735
н	-0.65678	-1.11245	-3.08673
н	-5.14511	-0.09061	-2.97502
н	-5.58370	0.95406	1.18702
н	-6.56330	0.76721	-1.10515
н	-2.80487	-0.72667	-2.57416
н	-3 23990	0 31048	1 59526
P	2 75269	-0 56972	0.02502
P	-0 35904	2 92191	-0 16897
, C	1 18875	0.07124	0.20511
c	2 81820	-1 43502	-1 60870
c	5 64057	-0 92422	0.02336
c	2.04037	-0.92422	0.02330
c	2.99160	-0.51674	-2.02520
C C	0.44583	4.59443	-0.33812
C C	-1.44/03	2.84050	-1.00/42
с с	2./18/8	-2.00740	1.20013
L C	3.08/99	-1.0011/	2.04686
L C	1.58059	4./30/3	-1.35/04
C	-0./9146	2.3/434	-2.96863
C	-1.61628	3.31501	1.13844

С	-1.06112	3.41722	2.56279
Н	4.54837	0.54316	1.19679
Н	4.58050	0.89789	-0.51671
Н	1.88050	-1.99966	-1.69573
Н	3.63296	-2.17611	-1.56537
Н	6.60657	-0.41944	0.18811
Н	5.66677	-1.35204	-0.99057
Н	5.58516	-1.76119	0.73698
Н	2.17184	0.21264	-2.88978
Н	2.98998	-1.11304	-3.75082
Н	3.94061	0.04190	-2.79136
Н	3.39164	-2.78872	0.80947
Н	1.69826	-2.41721	1.15550
Н	4.13359	-1.32622	2.73649
Н	2.96521	-2.54345	3.29455
Н	2.44356	-0.86695	3.05250
Н	0.81435	4.86993	0.66218
Н	-0.36749	5.30285	-0.57211
Н	-2.26261	2.15753	-1.40165
Н	-1.89930	3.84531	-1.79718
Н	-0.31412	1.39141	-2.83234
Н	-0.02143	3.07203	-3.33172
Н	-1.55086	2.27644	-3.76091
Н	2.38663	4.00951	-1.15749
Н	2.01363	5.74328	-1.31306
Н	1.23069	4.56865	-2.38772
Н	-2.37786	2.52287	1.08400
Н	-2.11602	4.25554	0.84800
Н	-0.60908	2.46645	2.88524
Н	-1.86809	3.65908	3.27274
ы	-0 20325	/ 20178	2 65726

Optimized cartesian coordinates for complex $[Rh(GePh_3)(H)(CH_3)(PEt_3)_2]$ (**6b**), energies are corrected for zero-point energy and given in Hartree: Energy: -2297.909020

Ener	gy: -2297.905	9020	
Rh	1.12679	1.03586	-0.06979
С	1.66316	1.42499	-2.02878
н	2.31170	2.05907	0.13866
н	1.10344	0.68703	-2.60146
н	2.72816	1.30361	-2.21044
н	1.37712	2.42382	-2.33857
Ge	-0.90357	-0.70022	-0.02425
С	-1.33575	-1.48577	1.78359
С	-0.64251	-2.32296	-1.19349
С	-2.76200	-0.10406	-0.56113
С	-0.64181	-1.08324	2.93773
С	-2.37630	-2.42104	1.95976
С	-0.95220	-1.58989	4.20707
С	-1.97927	-2.52497	4.35083
С	-2.69312	-2.93788	3.22012
С	-0.60102	-3.63773	-0.68994
С	-0.22360	-3.26016	-3.42478
С	-0.19394	-4.55579	-2.89968
С	-0.37900	-4.73895	-1.52642
С	-0.43569	-2.16563	-2.57911
С	-3.66641	0.37184	0.40981
С	-3.19766	-0.08079	-1.89983

С	-4.46321	0.40042	-2.25517
С	-4.93356	0.85696	0.06460
С	-5.33735	0.87746	-1.27372
н	-3.50515	-3.66320	3.32162
н	-0.39218	-1.25058	5.08299
н	-2.22735	-2.92589	5.33681
н	-2.95997	-2.74813	1.09513
н	0.16039	-0.34543	2.85099
н	-0 74635	-3 81283	0 37847
н	-0 35518	-5 74634	-1 10124
н	-0 07599	-3 10001	-4 49650
ц	-0.07654	-5 /1/1/	-2 55511
ц	-0.43059	-1 16276	-3 01664
н Ц	4 76059	-1.10270	2 20509
н ц	-4.70938 E 61062	1 21257	-3.30308
	-5.01005	1.21257	0.84054
н	-6.32672	1.25201	-1.54807
н	-2.54704	-0.46021	-2.69094
H	-3.38/51	0.34690	1.46702
P	2.84373	-0.57360	0.13868
Р	-0.22052	2.95007	0.09040
С	4.52914	0.19410	-0.03108
С	2.95798	-2.08737	-0.92482
С	5.75405	-0.70281	0.17762
С	3.26039	-1.83769	-2.40625
С	0.69111	4.57235	0.13033
С	-1.65181	3.28512	-1.04394
С	2.89213	-1.33814	1.82852
С	3.11720	-0.34859	2.97732
С	1.59335	4.92266	-1.05617
С	-1.41143	3.15839	-2.55106
С	-1.10290	3.04550	1.72206
С	-0.20985	2.94526	2.96284
н	4.53666	1.03750	0.67655
н	4.55514	0.65653	-1.03097
н	1.99518	-2.60908	-0.82194
н	3.72863	-2.74229	-0.48393
н	6.68027	-0.11537	0.06830
н	5.80093	-1.52379	-0.55468
н	5.77131	-1.15252	1.18314
н	2.47078	-1.24350	-2.88624
н	3.31991	-2.79731	-2.94302
н	4.21875	-1.31355	-2.55327
н	3.67404	-2.11539	1.83637
н	1.92881	-1.85626	1.95554
н	4.11927	0.10688	2.93618
н	3 02441	-0.85903	3 94899
н	2 38380	0.47305	2 95995
н	1.30349	4.53677	1.04581
н	-0.06672	5.36115	0.28261
н	-2 43270	2 57101	-0 74283
н	-2 02402	4 29443	-0 79390
н	-1 07510	2 14585	-2 81631
н	-0.66406	3,87560	-2.92428
н	-2.35145	3.34641	-3.09359
н	2.37799	4,16422	-1.19501
н	2.08906	5.89131	-0.88087
н	1.03024	5.00957	-1.99799
н	-1.83809	2,22643	1.71652
н	-1.67740	3.98803	1.73749

н	0.38104	2.01581	2.96076
Н	-0.82297	2.94397	3.87798
Н	0.49426	3.78865	3.03827

Optimized cartesian coordinates for complex [Rh(GePh₃)(H)(CH₃)(PEt₃)₂] (**6c**) , energies are corrected for zero-point energy and given in Hartree: Energy: -2297.907361

Rh	0.17447	-1.56684	0.09110
Ge	-0.14297	1.06031	-0.04927
С	-0.07086	1.51516	1.91586
С	-1.85616	2.01300	-0.56464
С	1.21871	2.26958	-0.91957
С	-2.12100	2.42288	-1.88639
С	-3.33094	3.02712	-2.24407
С	-4.32395	3.23916	-1.28256
С	-4.08524	2.84860	0.03767
С	-2.86895	2.24763	0.38639
С	2.09220	3.10537	-0.19719
С	3.02134	3.93275	-0.84139
С	3.10261	3.95027	-2.23629
С	2.25335	3.12325	-2.97805
С	1.33574	2.29400	-2.32428
С	-0.12485	2.82475	2.43261
С	-0.11527	3.07090	3.81005
С	-0.06276	2.00573	4.71596
С	-0.02337	0.69519	4.23306
С	-0.02660	0.46493	2.85128
н	-1.36738	2.27842	-2.66334
н	-3.49657	3.33742	-3.27959
н	-5.27015	3.71123	-1.55853
н	-4.84516	3.01961	0.80548
н	-2.70300	1.97574	1.43182
н	2.04795	3.12318	0.89428
н	3.68070	4.57171	-0.24716
н	3.82212	4.59968	-2.74101
н	2.30749	3.12063	-4.07026
н	0.69909	1.64523	-2.93368
н	-0.18818	3.67312	1.74588
н	-0.15528	4.09949	4.17900
н	-0.05864	2.19649	5.79201
н	0.00899	-0.14713	4.92932
н	-0.00367	-0.57696	2.50005
Р	-2.11663	-1.98149	-0.19244
Р	2.52290	-1.39091	-0.17320
С	-2.60911	-3.76104	-0.38109
С	-2.82616	-1.19214	-1.71582
С	-4.14371	-1.71352	-2.30428
С	-1.90602	-4.50748	-1.51931
С	-3.13970	-1.44257	1.25980
С	-4.66718	-1.57268	1.22346
С	3.51269	-0.26449	0.91816
С	2 02240	-0 87//9	-1 91917
С	2.32240	0.07445	T.JTJT/
c	3.54009	-0.68014	2.39358
C	3.54009 4.21444	-0.68014 -0.09695	2.39358
c	3.54009 4.21444 3.41662	-0.68014 -0.09695 -3.01343	2.39358 -2.19658 -0.01144
c c	3.54009 4.21444 3.41662 4.92052	-0.68014 -0.09695 -3.01343 -3.05590	2.39358 -2.19658 -0.01144 -0.30452

Н	-2.02410	-1.26255	-2.46818
н	-2.40781	-4.25903	0.57952
Н	-3.70074	-3.78925	-0.52288
Н	-2.72610	-2.01804	2.10638
н	-2.85829	-0.39543	1.44448
н	-4.97659	-1.66293	-1.58841
н	-4.06638	-2.75411	-2.65537
н	-4.42455	-1.09735	-3.17413
н	-0.81846	-4.54002	-1.36177
н	-2.08804	-4.03124	-2.49614
н	-2.27228	-5.54469	-1.58489
н	-5.00043	-2.59788	0.99783
Н	-5.11238	-0.89511	0.47991
Н	-5.08878	-1.30013	2.20483
Н	3.07417	0.73834	0.81012
Н	4.53864	-0.20179	0.52378
Н	2.89553	-1.81187	-2.50169
Н	2.06274	-0.28097	-2.25448
Н	3.21918	-3.38020	1.00702
Н	2.88011	-3.70681	-0.67828
Н	5.11834	-0.63957	-1.88236
Н	4.20923	0.88236	-1.69647
Н	4.30409	0.09542	-3.27819
Н	2.52764	-0.74226	2.81918
Н	4.09882	0.06157	2.98631
Н	4.03250	-1.65496	2.53951
Н	5.49219	-2.36875	0.33907
Н	5.14488	-2.79979	-1.35086
Н	5.31178	-4.07095	-0.12558
С	0.41921	-3.47195	0.99107
Н	-0.52011	-3.84463	1.39825
Н	1.10049	-3.30876	1.83128
Н	0.84314	-4.26237	0.37232
Н	0.28290	-2.31884	-1.21788

Optimized cartesian coordinates for compound $[Rh(GePh_3)(H)(CH_3)(PEt_3)_2]$ (6d), energies are corrected for zero-point energy and given in Hartree: Energy: -2297.906895

Ener	gy: -2297.906	0895		
Rh	0.32195	-1.48146	-0.05888	
Ge	-0.22901	1.10195	-0.06673	
С	0.06044	1.98307	1.72638	
С	-2.10544	1.77049	-0.43219	
С	0.84431	2.21470	-1.36079	
С	-2.56755	2.08628	-1.72423	
С	-3.89331	2.46879	-1.96000	
С	-4.80374	2.54739	-0.90166	
С	-4.36779	2.25287	0.39380	
С	-3.03868	1.87418	0.61911	
С	1.71567	3.24783	-0.96462	
С	2.48432	3.95844	-1.89520	
С	2.40264	3.65465	-3.25711	
С	1.55020	2.62895	-3.67706	
С	0.79121	1.91982	-2.73935	
С	-0.14227	3.36322	1.92990	
С	0.01985	3.95149	3.18846	
С	0.37926	3.16818	4.29107	
С	0.56929	1.79489	4.12195	

С	0.41081	1.21915	2.85387
н	-1.87964	2.04824	-2.57189
н	-4.21459	2.71277	-2.97663
н	-5.83918	2.84662	-1.08288
н	-5.06196	2.32840	1.23577
н	-2.71897	1.67694	1.64647
н	1.80322	3.50628	0.09321
н	3.14843	4.75709	-1.55252
н	2.99890	4.21073	-3.98488
н	1.47844	2.37632	-4.73869
н	0.15084	1.10817	-3.09684
н	-0.44565	3.99265	1.08904
н	-0.14205	5.02596	3.31160
н	0.50266	3.62543	5.27606
н	0.83807	1 16883	4 97747
н	0 55342	0 13889	2 74874
P	-1 90854	-2 20226	0.04179
ı D	2 67007	_1 21111	0.04175
r C	-2 13028	-1.31111	-0.00000
c	2 1 2 2 1 5 0 2 6	1 55/17	1 20201
c	-3.12313	2 2/1/0	1 10500
c	-4.40695	-2.54149	-1.40300
c	-1.57561	-4.74270	-1.24505
C C	-2.57884	-1.76996	1.71941
C C	-4.02083	-2.14080	2.08553
C	3.25851	-0.98567	1.81416
C	3.57612	-0.07166	-0.96642
C	2./1296	-1.9/220	2.85368
C	4.88579	0.53228	-0.44308
С	3.47210	-2.92768	-0.35924
С	5.00055	-3.03057	-0.36005
н	-3.35602	-0.53059	-0.87426
н	-2.55401	-1.43119	-2.13785
н	-1.61294	-4.41986	0.89787
Н	-3.19996	-4.27687	0.12331
Н	-1.87431	-2.23717	2.42991
Н	-2.43657	-0.68368	1.81964
Н	-5.02825	-2.47819	-0.58739
Н	-4.20501	-3.33833	-1.90667
Н	-5.01928	-1.79478	-2.22303
Н	-0.49142	-4.58218	-1.33392
Н	-2.04844	-4.37695	-2.17163
Н	-1.75722	-5.82822	-1.19002
н	-4.21920	-3.21902	1.98370
н	-4.74734	-1.59729	1.46336
н	-4.22233	-1.86855	3.13447
н	2.94128	0.03997	2.05969
н	4.35959	-0.98997	1.82805
н	3.74193	-0.57451	-1.93461
н	2.86219	0.73751	-1.16742
н	3.02957	-3.66943	0.32374
н	3.07308	-3.17640	-1.35607
н	5.65666	-0.22322	-0.22991
н	4.72274	1.11684	0.47537
н	5.29699	1.22456	-1.19543
н	1.61118	-1.98992	2.86256
н	3.05179	-1.69356	3.86417
н	3.05370	-3.00185	2.66105
н	5.43619	-2.78929	0.62269
н	5.45993	-2.36280	-1.10474

Н	5.31123	-4.05848	-0.60950
С	0.49185	-1.83588	-2.08571
Н	-0.49068	-1.76164	-2.54724
Н	0.91484	-2.81353	-2.30323
Н	1.13127	-1.05458	-2.49213
н	0.63932	-3.03399	0.09528

Figure 3. An ORTEP diagram of 14a. Ellipsoids are drawn at the 50% probability level. C–H hydrogen atoms were omitted for clarity.

The molecular structure of **14b** in the solid state was determined by X-ray crystallography (Figure 4). Yellow crystals (needles) were obtained from toluene/*n*-hexane solution at 243 K. Selected bond lengths and angles are summarized in Table 1.

The molecular structure in the solid state of **14a** and **14b** differs in the coordination geometry at the rhodium metal center as well as in the conformation of the ethyl groups of the phosphine ligands. In the case of **14a** the peroxide unit is directed towards the back whereas in **14b** it is directed towards the front.

Figure 4. An ORTEP diagram of **14b**. Ellipsoids are drawn at the 50% probability level. The ethyl groups of the phosphine ligands atoms were omitted for clarity.

Lengths [A]			
Rh1–01	2.1556(14)	02–02 ⁱ	3.558(2)
Rh1 ⁱ –O1	2.0957(15)	01–02 ⁱ	2.784(2)
Rh1–O2	2.0031(15)	C13–C14	1.323(3)
Rh1–P1	2.3497(6)	C13-F1	1.392(2)
Rh1–P2	2.2868(6)	C14–F2	1.380(3)
Rh1–C13	1.991(2)	Rh1–O _{middle}	1.9480(13)
01–02	1.463(2)	Rh1 ⁱ –O _{middle}	2.3598(13)
01–01 ⁱ	2.668(2)		
Angles [°]			
01–Rh1–P1	121.00(4)	02–01–Rh1	63.90(8)
01–Rh1–P2	90.95(4)	02 ⁱ –01 ⁱ –Rh1	101.89(10)
O2–Rh1–P1	161.65(5)	O2-Rh1-C13	108.41(8)
O2–Rh1–P2	82.02(5)	C13–Rh1–O1	149.00(8)
P2–Rh1–P1	104.81(2)	C13–Rh1–O1 ⁱ	98.49(8)
O2-Rh1-O1	40.99(6)	C13–Rh1–P1	89.03(7)
01–Rh1–O1 ⁱ	77.72(6)	C13–Rh1–P2	88.14(7)
02–Rh1–O1 ⁱ	85.51(6)	Rh1–O1–Rh1 ⁱ	102.28(6)
O1 ⁱ –Rh1–P1	86.32(4)	01–02–Rh1	75.11(9)
O1 ⁱ –Rh1–P2	167.22(4)		

Table 1. Selected bond lengths [Å] and angles [°] in $[Rh{(E)-CF=CF(CF_3)(\mu-\kappa^1:\eta^2-O_2)(PEt_3)_2]_2$ (14b).

[1] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M.

Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, *Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT*, 2013.

- [2] K. A. Peterson, D. Figgen, M. Dolg and H. Stoll, J. Chem. Phys., 2007, **126**, 124101.
- [3] K. A. Peterson, J. Chem. Phys., 2003, **119**, 11099-11112.