## **Electronic Supplementary Information (ESI)**

Lanthanide dinuclear complexes constructed from mixed oxygen-donor ligands: effect of substituent positions of the neutral ligand on the magnetic dynamics in the Dy analogues

Wen-Hua Zhu,\*<sup>*a*</sup> Shan Li,<sup>*a*</sup> Chen Gao,<sup>*b*</sup> Xia Xiong,<sup>*a*</sup> Yan Zhang,<sup>*a*</sup> Li Liu,<sup>*a*</sup> Annie K Powell,<sup>*c*</sup> and Song Gao\*<sup>*b*</sup>

<sup>a</sup> Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China.

<sup>b</sup> Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, No. 5 Yiheyuan Road, Beijing 100871, China.

<sup>c</sup> Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstrasse 15, Karlsruhe 76131, Germany.

| Table S1 Selected bond lengths (Å) and angles (°) for 1 |           |                   |           |  |
|---------------------------------------------------------|-----------|-------------------|-----------|--|
| Dy(1)–O(1)                                              | 2.278(2)  | Dy(1)-O(2)#1      | 2.322(2)  |  |
| Dy(1)–O(3)                                              | 2.291(2)  | Dy(1)–O(4)        | 2.432(2)  |  |
| Dy(1)–O(5)                                              | 2.414(2)  | Dy(1)–O(6)        | 2.454(2)  |  |
| Dy(1)-O(7)                                              | 2.405(2)  | Dy(1)–O(8)        | 2.383(2)  |  |
| O(1)-Dy(1)-O(2)#1                                       | 111.52(8) | O(1)-Dy(1)-O(3)   | 151.74(9) |  |
| O(1)–Dy(1)–O(4)                                         | 82.96(8)  | O(1)–Dy(1)–O(5)   | 86.69(8)  |  |
| O(1)–Dy(1)–O(6)                                         | 125.32(8) | O(1)–Dy(1)–O(7)   | 74.37(8)  |  |
| O(1)–Dy(1)–O(8)                                         | 76.60(8)  | O(2)#1–Dy(1)–O(3) | 81.53(8)  |  |
| O(2)#1–Dy(1)–O(4)                                       | 146.72(8) | O(2)#1–Dy(1)–O(5) | 151.39(9) |  |
| O(2)#1–Dy(1)–O(6)                                       | 76.63(9)  | O(2)#1–Dy(1)–O(7) | 78.42(9)  |  |
| O(2)#1–Dy(1)–O(8)                                       | 77.51(9)  | O(3)–Dy(1)–O(4)   | 74.04(8)  |  |
| O(3)–Dy(1)–O(5)                                         | 92.53(9)  | O(3)–Dy(1)–O(6)   | 81.31(9)  |  |
| O(3)–Dy(1)–O(7)                                         | 133.80(8) | O(3)–Dy(1)–O(8)   | 82.37(9)  |  |
| O(4)–Dy(1)–O(5)                                         | 53.64(8)  | O(4)–Dy(1)–O(6)   | 120.39(8) |  |
| O(4)–Dy(1)–O(7)                                         | 134.85(7) | O(4)–Dy(1)–O(8)   | 77.15(8)  |  |
| O(5)–Dy(1)–O(6)                                         | 74.81(9)  | O(5)–Dy(1)–O(7)   | 86.05(8)  |  |
| O(5)–Dy(1)–O(8)                                         | 129.68(9) | O(6)–Dy(1)–O(7)   | 53.76(8)  |  |
| O(6)–Dy(1)–O(8)                                         | 151.11(9) | O(7)–Dy(1)–O(8)   | 131.74(8) |  |

Symmetry codes: #1 - x, -y, -z

| Table S2 Hydrogen bonding geometry for 1: lengths (Å) and angles (°) |        |                 |                 |        |  |
|----------------------------------------------------------------------|--------|-----------------|-----------------|--------|--|
| D−H···A                                                              | d(D–H) | $d(H \cdots A)$ | $d(D \cdots A)$ | <(DHA) |  |

| D–H···A              | d(D–H)    | $d(H \cdots A)$ | $d(D \cdots A)$ | <(DHA) |
|----------------------|-----------|-----------------|-----------------|--------|
| O(8)–H(81)····O(7)#1 | 0.946(17) | 1.811(18)       | 2.752(3)        | 172(4) |
| O(8)–H(82)····O(4)#2 | 0.915(18) | 1.857(19)       | 2.765(3)        | 172(4) |

Symmetry codes: #1 -x, -y, -z, #2 -x+1, -y, -z

| Table S3 Selected bond lengths (Å) and angles (°) for 7 |           |                   |           |  |
|---------------------------------------------------------|-----------|-------------------|-----------|--|
| Dy(1)-O(1)                                              | 2.289(2)  | Dy(1)-O(2)#1      | 2.348(2)  |  |
| Dy(1)–O(3)                                              | 2.282(2)  | Dy(1)–O(4)        | 2.434(2)  |  |
| Dy(1)–O(5)                                              | 2.431(2)  | Dy(1)–O(6)        | 2.486(2)  |  |
| Dy(1)-O(7)                                              | 2.388(2)  | Dy(1)–O(8)        | 2.363(2)  |  |
| O(1)-Dy(1)-O(2)#1                                       | 113.50(8) | O(1)-Dy(1)-O(3)   | 151.71(8) |  |
| O(1)-Dy(1)-O(4)                                         | 83.55(7)  | O(1)–Dy(1)–O(5)   | 88.26(8)  |  |
| O(1)–Dy(1)–O(6)                                         | 125.33(7) | O(1)–Dy(1)–O(7)   | 74.90(7)  |  |
| O(1)–Dy(1)–O(8)                                         | 76.47(8)  | O(2)#1–Dy(1)–O(3) | 79.69(8)  |  |
| O(2)#1–Dy(1)–O(4)                                       | 143.52(7) | O(2)#1–Dy(1)–O(5) | 150.86(8) |  |
| O(2)#1–Dy(1)–O(6)                                       | 76.74(8)  | O(2)#1–Dy(1)–O(7) | 80.36(8)  |  |
| O(2)#1–Dy(1)–O(8)                                       | 77.75(8)  | O(3)–Dy(1)–O(4)   | 72.81(8)  |  |
| O(3)–Dy(1)–O(5)                                         | 89.96(8)  | O(3)–Dy(1)–O(6)   | 81.11(8)  |  |
| O(3)–Dy(1)–O(7)                                         | 133.22(8) | O(3)–Dy(1)–O(8)   | 82.59(8)  |  |
| O(4)–Dy(1)–O(5)                                         | 53.62(7)  | O(4)–Dy(1)–O(6)   | 120.80(7) |  |
| O(4)–Dy(1)–O(7)                                         | 136.11(7) | O(4)–Dy(1)–O(8)   | 75.39(8)  |  |
| O(5)–Dy(1)–O(6)                                         | 74.77(7)  | O(5)–Dy(1)–O(7)   | 87.46(8)  |  |
| O(5)–Dy(1)–O(8)                                         | 128.18(8) | O(6)–Dy(1)–O(7)   | 53.22(7)  |  |
| O(6)–Dy(1)–O(8)                                         | 151.76(9) | O(7)–Dy(1)–O(8)   | 132.84(8) |  |

Symmetry codes: #1 - x, -y, -z

| D–H···A                   | d(D–H)           | d(H···A)  | d(D···A) | <(DHA) |
|---------------------------|------------------|-----------|----------|--------|
| O(8)–H(81)····O(7)#1      | 0.932(18)        | 1.83(2)   | 2.728(3) | 161(4) |
| O(8)−H(82)···O(4)#2       | 0.921(18)        | 1.823(19) | 2.738(3) | 172(4) |
| Symmetry codes: #1 –x, –y | , -z, #2 -x+1, - | у, —z     |          |        |

# Electronic Supplementary Materials (ESI) for Daton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2016

|          | 1      | 7      |
|----------|--------|--------|
| OP-8     | 31.032 | 31.183 |
| HPY-8    | 21.202 | 21.406 |
| HBPY-8   | 12.656 | 12.542 |
| CU-8     | 9.451  | 9.242  |
| SAPR-8   | 2.796  | 3.115  |
| TDD-8    | 3.056  | 3.399  |
| JGBF-8   | 12.200 | 11.968 |
| JETBPY-8 | 26.314 | 25.954 |
| JBTPR-8  | 2.899  | 2.878  |
| BTPR-8   | 2.196  | 2.192  |
| JSD-8    | 4.078  | 4.323  |
| TT-8     | 10.294 | 9.959  |

| Table S5 Continuous shaped measures | (CShM) fo | or 1 and 7 using | SHAPE 2.1 |
|-------------------------------------|-----------|------------------|-----------|
|-------------------------------------|-----------|------------------|-----------|

| $OP-8 = (D_{8h}) Octagon$                  | JGBF-8 = $(D_{2d})$ Johnson gyrobifastigium J26       |  |  |  |
|--------------------------------------------|-------------------------------------------------------|--|--|--|
| HPY-8 = $(C_{7v})$ Heptagonal pyramid      | JETBPY-8 = $(D_{3h})$ Johnson elongated triangular    |  |  |  |
|                                            | bipyramid J14                                         |  |  |  |
| HBPY-8 = $(D_{6h})$ Hexagonal bipyramid    | JBTPR-8 = $(C_{2\nu})$ Biaugmented trigonal prism J50 |  |  |  |
| $CU-8 = (O_h)$ Cube                        | BTPR-8 = $(C_{2v})$ Biaugmented trigonal prism        |  |  |  |
| SAPR-8 = $(D_{4d})$ Square antiprism       | JSD-8 = $(D_{2d})$ Snub diphenoid J84                 |  |  |  |
| TDD-8 = $(D_{2d})$ Triangular dodecahedron | TT-8 = $(T_d)$ Triakis tetrahedron                    |  |  |  |
|                                            |                                                       |  |  |  |



**Fig. S1** (a) View of the dinuclear structure bridged by Bza ligands in complex **1**. (b) View of the packing diagram of complex **7** along the *a*-axis.



Fig. S2 The TG–DTA curves for complexes 4–8.



Fig. S3 Field dependence of the magnetization of compound 1 at 2.0 K. Inset: the hysteresis loop plot of compound 1 measured at 2.0 K.



Fig. S4 Field dependence of the magnetization of compound 7 at 2.0 K. Inset: the hysteresis loop plot of compound measured 2.0 K. 7 at



**Fig. S5** Field dependence of the in-phase ( $\chi'$ , inset) and out-of-phase ( $\chi''$ ) ac susceptibility for 1 with f = 1000 Hz.



Fig. S6 Field dependence of the in-phase ( $\chi'$ , inset) and out-of-phase ( $\chi''$ ) ac susceptibility for 7 with f = 1000 Hz.



**Fig. S7** Temperature dependence of  $\chi'$  and  $\chi''$  ac susceptibility components under a 1.5 kOe dc field for 7.



Fig. S8 Arrhenius analysis of 7 under a 1 and 1.5 kOe dc field.



**Fig. S9** The Cole–Cole plots of  $\chi$ " vs.  $\chi$ ' at 2.0, 2.2, 2.4, 2.6, 2.8 and 3.0 K for compound 1 under a 1 kOe dc field.



**Fig. S10** The Cole–Cole plots of  $\chi''$  vs.  $\chi'$  at 2.0, 2.2, 2.4, 2.6, 2.8 and 3.0 K for compound 7 under a zero dc field. The solid lines are the least-square fitting of the data to a distribution of single relaxation processes.



**Fig. S11** The Cole–Cole plots of  $\chi''$  vs.  $\chi'$  at 2.0, 2.2, 2.4, 2.6, 2.8 and 3.0 K for compound 7 under a 1 kOe dc field. The solid lines are the least-square fitting of the data to a distribution of single relaxation processes.



**Fig. S12** The Cole–Cole plots of  $\chi''$  vs.  $\chi'$  at 2.0, 2.2, 2.4, 2.8 and 3.0 K for compound 7 under a 1.5 kOe dc field. The solid lines are the least-square fitting of the data to a distribution of single relaxation processes.

**Table S6** Relaxation parameters from the best fitting of the Cole–Cole diagrams by the generalized Debye model under a zero dc field for **7**.

| <i>T</i> (K) | $\chi_{\rm S}({\rm cm}^3~{\rm mol}^{-1}~)$ | $\chi_{\rm T}({ m cm}^3~{ m mol}^{-1})$ | $\tau(s)$                     | α    |
|--------------|--------------------------------------------|-----------------------------------------|-------------------------------|------|
| 2.0          | 4.273                                      | 5.107                                   | 5.7 <b>¢</b> 10 <sup>-5</sup> | 0.37 |
| 2.2          | 3.889                                      | 4.662                                   | 5.2 <b>¢</b> 10 <sup>-5</sup> | 0.37 |
| 2.4          | 3.567                                      | 4.285                                   | 4.6 <b>×</b> 10 <sup>-5</sup> | 0.37 |
| 2.6          | 3.303                                      | 3.968                                   | 4.1 <b>¢</b> 10 <sup>-5</sup> | 0.38 |
| 2.8          | 3.078                                      | 3.695                                   | 3.78310-5                     | 0.38 |
| 3.0          | 2.889                                      | 3.459                                   | 3.3 \$ 10-5                   | 0.38 |

**Table S7** Relaxation parameters from the best fitting of the Cole–Cole diagrams by the generalized Debye model under 1 kOe dc field for 7.

| <i>T</i> (K) | $\chi_{\rm S}({\rm cm}^3~{\rm mol}^{-1}~)$ | $\chi_{\rm T}({\rm cm}^3~{\rm mol}^{-1}~)$ | $\tau(s)$                     | α    |
|--------------|--------------------------------------------|--------------------------------------------|-------------------------------|------|
| 2.0          | 1.678                                      | 4.366                                      | 4.4 10-4                      | 0.43 |
| 2.2          | 1.576                                      | 3.899                                      | 2.2 10-4                      | 0.37 |
| 2.4          | 1.456                                      | 3.617                                      | 1.2 3 10-4                    | 0.33 |
| 2.6          | 1.327                                      | 3.414                                      | 6.5 <b>3</b> 10 <sup>-5</sup> | 0.30 |
| 2.8          | 1.179                                      | 3.253                                      | 3.5 <b>¢</b> 10 <sup>-5</sup> | 0.30 |
| 3.0          | 0.949                                      | 3.123                                      | 1.7 🕫 10-5                    | 0.33 |

**Table S8** Relaxation parameters from the best fitting of the Cole–Cole diagrams by the generalized Debye model under a 1.5 kOe dc field for 7.

| <i>T</i> (K) | $\chi_{\rm S}({\rm cm}^3~{\rm mol}^{-1}~)$ | $\chi_{\rm T}({\rm cm}^3~{\rm mol}^{-1})$ | $\tau(s)$                     | α    |
|--------------|--------------------------------------------|-------------------------------------------|-------------------------------|------|
| 2.0          | 2.363                                      | 3.739                                     | 3.8\varphi10^{-4}             | 0.50 |
| 2.2          | 2.076                                      | 3.597                                     | 1.7 <b>6</b> 10 <sup>-4</sup> | 0.55 |
| 2.4          | 1.738                                      | 3.485                                     | 5.6 <b>3</b> 10 <sup>-5</sup> | 0.59 |
| 2.8          | 0.630                                      | 3.293                                     | 3.2310-6                      | 0.63 |
| 3.0          | 0.000                                      | 3.191                                     | 1.18310-6                     | 0.61 |