Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information

Competing Ferro- and Antiferromagnetic Interactions in a Hexagonal Bipyramidal Nickel Thiolate Cluster

Tomohiko Hamaguchi,^a Michael D. Doud,^b Jeremy Hilgar,^b Jeffrey D. Rinehart,^b and Clifford P. Kubiak*,^b

- ^a Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
- b Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, Mail Code 0358, La Jolla, CA 92093-0358, USA

Instrumentation.

Powder X-ray diffraction (PXRD) data were recorded on a Bruker D8

Advance equipped with a 1-D Lynxeye silicon strip detector and Cu radiation

(1.54178 Å). The C, H, N and S analysis was performed by NuMega Resonance

Labs. Magnetic measurements were carried out on a Quantum Design MPMS3.

X-ray crystallography.

X-ray diffraction data were collected using a Bruker APEX-II CCD diffractometer, with Mo K α radiation (λ = 0.71070 Å). Multi-scan absorption corrections were applied to the intensity data. The structure was solved using the direct method (using *SHELXS-2013/4*)¹ and refined using the full-matrix least-squares method using F^2 (*SHELXL-2013/4*)¹ operated by *Olex2* software package² and *Yadokari-XG* software package.³ All non-hydrogen atoms were refined using anisotropic parameters. Hydrogen atoms were included in the calculated positions and refined using a riding model. Crystallographic diagrams were obtained using the ORTEP program.⁴ Crystal data are shown in

Magnetometry.

The magnetic sample was prepared by adding fine crystalline powder to a VSM powder sample holder from Quantum Design. The addition was carried out in small increments and after each increment the sample in the holder was firmly pressed into a pellet. This was done so as to reduce any crystallite orientation during the measurements. All magnetic measurements were performed on a Quantum Design MPMS-3 SQUID Magnetometer with a four second scan speed. The compound's magnetic susceptibility was measured from 2 to 300 K using an applied field of 1000 Oe. The variable-temperature magnetization measurements were carried out at 2.00 K, 4.00 K, and 6.00 K from 0 to 70000 Oe applied field. All data were corrected for diamagnetic contributions using Pascal's constants ($\chi_D = -0.00139136 \, \text{emu/mol}$).

The best fit of the $\chi_{\rm M}T$ data was obtained using the program $PHI.^5$ Isotropic exchange interactions between adjacent spin centers were considered and a total of

two exchange parameters were defined. The parameter $J_{\rm FM}$ represented planar-planar Ni coupling and $J_{\rm AFM}$ was defined for planar-capping coupling. The following parameters of best fit were found: $J_{\rm FM}=12.9~{\rm cm}^{-1}$, $J_{\rm AFM}=-30.7~{\rm cm}^{-1}$, $g=2.1~(R=\Sigma)$ ($\chi_{\rm M}T_{\rm Obs}-\chi_{\rm M}T_{\rm Calc}$) $^2/\Sigma\chi_{\rm M}T_{\rm Obs}^2=7.26{\rm x}10^{-5}$).

The best fit of the variable temperature magnetization data was obtained using MagProp, a sub-routine of the Data Analysis and Visualization Environment.⁶ This data was modelled as an S=4 giant spin using a Hamiltonian containing an average axial zero-field splitting term and a Zeeman term (Eq. 2). The following parameters of best fit were found: |D|=0.35 cm⁻¹, g=2.2 ($R=\Sigma$ ($M_{\rm Obs}-M_{\rm Calc}$)² / Σ $M_{\rm Obs}^2=1.11$ x10⁻⁴).

Synthesis.

A CH_2Cl_2 solution (15 ml) of 2-pySH (1.639 g, 14.74 mmol) was added to a CH_3CN (15 ml) solution of $[Ni(H_2O)_6](BF_4)_2$ (509.2 mg, 1.496 mmol), and the mixture was stirred overnight. The resulted dark green-yellow solution was evacuated to dryness. The residual solid was dissolved to CH_2Cl_2 and was filtrated to

remove insoluble material. The filtrate was evacuated to dryness. The residual solid was dissolved to small amount of CH_2Cl_2 and excess amount of 2-propanol was added to the solution. The resulted precipitate was collected by filtration. The obtained crude product was purified by recrystallization. A CH_3CN solution of the crude product and excess NH_4PF_6 was placed under 2-propanol vapor for seven days, and the resulted deep brown cubic crystals were collected by filtration. The crystals were washed with water, 2-propanol and diethyl ether and were dried *in vacuo*. Yield 171.3 mg (35.0 %). Anal. found: C, 33.28; H, 2.94; N, 9.38; S, 14.73 %; calcd. for $C_{72}H_{66}F_{24}N_{18}Ni_8P_4S_{12}$: C, 33.03; H, 2.54; N, 9.63; S, 14.70 %. UV-vis (CH_3CN) λ_{max} , nm (ε , dm^3 mol⁻¹ cm⁻¹) 225sh (93700), 270sh (66500), 320 (63400).

Table S1 Crystal Data

	Formula	$C_{72}H_{66}N_{18}Ni_{8}S_{12}P_{4}F_{24}$
	Formula Weight	2617.6
	Crystal System	monoclinic
	Space group	$P2_1/n$ (No. 14)
	$a/ ext{Å}$	13.9583(3)
	$b/ ext{Å}$	22.5215(5)
	$c/\mathrm{\AA}$	15.3686(4)
	$lpha/^{ m o}$	90
	<i>β</i> /°	92.3771(13)
	$\gamma^{\prime\circ}$	90
	V/Å ³	4827.1(2)
	Z	2
	$D_{ m cale}/{ m g}{ extsf{\circ}}{ m cm}^{ extsf{-}3}$	1.801
	μ (MoK $lpha$)/mm ⁻¹	1.949
	F(000)	2632
	Crystal Size/mm ³	$0.05\times0.05\times0.10$
Data Collection		
	Temperature/K	100
	Radiation [Angstrom]	Μο Κα, 0.71073
	Theta Min, Max/o	1.7, 25.3
	Dataset	-16: 15 ; -26: 27 ; -15: 18
	Tot., Uniq. Data, R(int)	39258, 8804, 0.021
	Observed Data $[I > 0.0 \text{ sigma}(I)]$	7789
Refinement		
	$N_{ m ref},N_{ m par}$	8804, 625
	R , w R_2 , S	0.0366, 0.1040, 1.05
	Max. and Av. Shift/Error	0.00, 0.00
	Min. and Max. Resd. Dens./e•Å-3	-0.86, 0.83

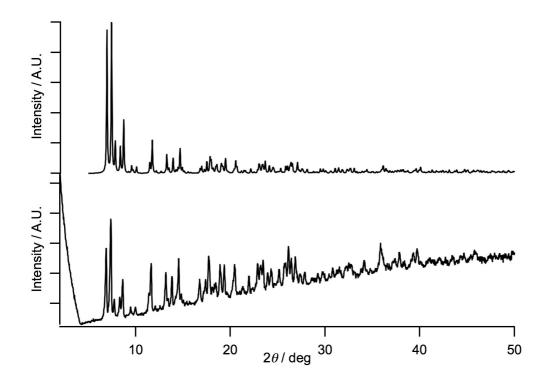


Figure S1. X-ray powder diffraction pattern of complex 1 (top: simulated pattern,

bottom: observed data)

Reference

- 1. G. M. Sheldrick, *Acta Crystallographica Section A*, 2008, **64**, 112-122.
- 2. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339-341.
- 3. C. Kabuto, S. Akine, T. Nemoto and E. Kwon, *J. Cryst. Soc. Jpn.*, 2009, **51**, 218-224.
- 4. L. Farrugia, J. Appl. Crystallogr., 2012, 45, 849-854.
- N. F. Chilton, R. P. Anderson, L. D. Turner, A. Soncini and K. S. Murray, *J. Comput. Chem.*, 2013, 34, 1164-1175.
- 6. R. T. Azuah, L. R. Kneller, Y. Qiu, P. L. W. Tregenna-Piggott, C. M. Brown, J. R. D. Copley and R. M. Dimeo, *J. Res. Natl. Inst. Stan. Technol.*, 2009, **114**, 341-358.