Antiproliferative activity of a series of cisplatin-based $\operatorname{Pt}(I V)$-acetylamido/carboxylato prodrugs

Mauro Ravera, ${ }^{\text {a }}$ Elisabetta Gabano, ${ }^{\text {a }}$ Ilaria Zanellato, ${ }^{\text {a }}$ Federico Fregonese, ${ }^{\text {a }}$ Giorgio Pelosi, ${ }^{\text {b }}$ James A. Platts, ${ }^{\mathrm{c}}$ Domenico Osella ${ }^{\mathrm{a} *}$.
${ }^{a}$ Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria (Italy).
${ }^{b}$ Dipartimento di Chimica, Università di Parma, Parco Area delle Scienze, 17/A, 43124 Parma (Italy).
${ }^{c}$ School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT (United Kingdom)

ELECTRONIC SUPPLEMENTARY INFORMATION

Content:
Table S1. Crystallographic data for complex 3a.
Table S2. Selected bond distances (\AA), angles $\left({ }^{\circ}\right)$ and hydrogen bonds for complex 3a.
Figure S1. View of the packing looking down the c axis of the unit cell and lateral view of the same image in which the hydrophobic tails protruding from both sides of the sheet are apparent.
Figures S2-S6. $\quad{ }^{1} H$ NMR spectra of 1a-5a (fresh solutions and aged 3 d). Solvent: phosphate buffer 100 mM in $\mathrm{D}_{2} \mathrm{O}$.

Figures S7-S13. $\quad{ }^{1}$ H NMR spectra of $\mathbf{1 b} \mathbf{- 5 b}$ (fresh solutions and aged 3 d). Solvent: phosphate buffer 100 mM in $\mathrm{D}_{2} \mathrm{O}$.

Figures S14-S18. RP-HPLC chromatograms (eluent: $15 \mathrm{mM} \mathrm{HCOOH} / \mathrm{MeOH} 70: 30$) of the reduction of 1a-5a with ascorbic acid (AsA) $([\mathrm{Pt}]=0.5 \mathrm{mM},[\mathrm{AsA}]=5 \mathrm{mM})$ in HEPES buffer ($2 \mathrm{mM}, \mathrm{pH} 7.5$).

Figure S9-S23. RP-HPLC chromatograms (eluent: $15 \mathrm{mM} \mathrm{HCOOH} / \mathrm{MeOH} 70: 30$) of the reduction of $\mathbf{1 b} \mathbf{- 5 b}$ with AsA $([\mathrm{Pt}]=0.5 \mathrm{mM},[\mathrm{AsA}]=5 \mathrm{mM})$ in HEPES buffer ($2 \mathrm{mM}, \mathrm{pH} 7.5$).

[^0]Figure S24. ESI-MS spectrum of $\left[\mathrm{Pt}(\right.$ acetamidato- $\left.N) \mathrm{Cl}\left(\mathrm{NH}_{3}\right)_{2}\right]$, obtained as trace product of the reduction of the a complexes, and ESI-MS simulation for $\mathrm{C}_{2} \mathrm{H}_{11} \mathrm{ClN}_{3} \mathrm{OPt}$ as $[\mathrm{M}+\mathrm{H}]^{+}$.

Figure S25.
$\left[{ }^{1} \mathrm{H},{ }^{15} \mathrm{~N}\right]$ HSQC spectrum of the reduction of $\mathbf{1 a}(20 \mathrm{mM})$ in the presence of AsA $(40 \mathrm{mM})$ in 80 mM HEPES with $10 \% \mathrm{v} / \mathrm{v} \mathrm{D}_{2} \mathrm{O}$ after 1 h (left) and 4 h (right) reaction time, respectively.
Figure S26. $\quad\left[{ }^{1} \mathrm{H},{ }^{15} \mathrm{~N}\right]$ HSQC spectrum of the reduction of $\mathbf{1 b}(20 \mathrm{mM})$ in the presence of AsA $(40 \mathrm{mM})$ in 80 mM HEPES with $10 \% \mathrm{v} / \mathrm{v} \mathrm{D}_{2} \mathrm{O}$ after 4 h reaction time.

Figure S27.
${ }^{195} \mathrm{Pt}$ NMR spectra of reduction of $\mathbf{1 a}(20 \mathrm{mM})$ in the presence of AsA $(40 \mathrm{mM})$ in 80 mM HEPES with $10 \% \mathrm{v} / \mathrm{v} \mathrm{D}_{2} \mathrm{O}$ after 6 h (lower spectrum) and 18 h (upper spectrum) reaction time.

Table S3. Miscellaneous experimental chemical and biological data of the complexes under investigation.

Table S1. Crystallographic data for complex 3a.

Chemical formula	$\mathrm{C}_{6} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Pt}$
M_{r}	445.21
Crystal system	Monoclinic
Space group	$P 21 / \mathrm{c}$
Temperature / K	293
Wavelength / \AA	0.71073
a / \AA	10.400(2)
b / \AA	10.093(2)
c / \AA	13.361(2)
$\alpha /^{\circ}$	90.00
$\beta /^{\circ}$	100.644(3)
$\gamma /{ }^{\circ}$	90.00
V / \AA^{3}	1378.4(4)
Z	4
Density / Mg m ${ }^{-3}$	2.145
Absorption co-efficient / mm ${ }^{-1}$	1.056
Absorption correction	Multi-scan
$F(000)$	840
Total no. of reflections	3752
Reflections, $I>2 \sigma(I)$	3024
Max. $2 \theta /^{\circ}$	29.31
Ranges (h, k, l)	$-14 \leq h \leq 13,-13 \leq k \leq 13,-18 \leq l \leq 18$
Refinement method	Full-matrix least-squares on F^{2}
Goodness-of-fit on F^{2}	1.042
R index $[I>2 \sigma(I)]$	0.0415
R index (all data)	0.0543

Table S2. Selected bond distances (\AA), angles $\left({ }^{\circ}\right)$ and hydrogen bonds for complex 3a.

Pt1-N3	$1.987(6)$	Pt1-N2	$2.036(5)$
Pt1-O2	$2.039(5)$	Pt1-N1	$2.052(7)$
Pt1-Cl2	$2.314(2)$	Pt1-C11	$2.325(2)$
N3-C1	$1.323(8)$	O1-C1	$1.227(9)$
O2-C3	$1.293(10)$	C3-O3	$1.206(10)$
C3-C4	$1.500(11)$	C2-C1	$1.518(10)$
C4-C5	$1.506(11)$	C5-C6	$1.548(14)$

N3-Pt1-N2	92.9(2)	N3-Pt1-O2	175.6(2)
N2-Pt1-O2	91.2(2)	N3-Pt1-N1	89.8(3)
N2-Pt1-N1	89.4(2)	O2-Pt1-N1	92.0(3)
N3-Pt1-C12	89.8(2)	N2-Pt1-Cl2	89.22(17)
O2-Pt1-C12	88.53(17)	N1-Pt1-Cl2	178.58(16)
N3-Pt1-Cl1	86.89(18)	N2-Pt1-Cl1	179.65(16)
O2-Pt1-Cl1	89.05(16)	N1-Pt1-Cl1	90.30(17)
C12-Pt1-Cl1	91.04(7)	C1-N3-Pt1	127.6(5)
C3-O2-Pt1	123.5(5)	O3-C3-O2	125.1(8)
O3-C3-C4	121.7(9)	O2-C3-C4	113.2(9)
O1-C1-N3	123.7(7)	O1-C1-C2	120.5(7)
N3-C1-C2	115.8(7)	C3-C4-C5	116.8(10)
C4-C5-C6	109.3(14)		

Donor...Acceptor		Donor-H...Acceptor	
N1...O3 (0)	$2.856(.013)$	N1-H1A...O3 (0)	$100.52(0.54)$
N2...O3 (0)	$2.885(.009)$	N2-H2A...O3 (0)	$131.35(0.43)$
N2...O1 (0)	$2.783(.009)$	N2-H2C...O1 (0)	$134.69(0.40)$
N2...O2 (1)	$3.008(.007)$	N2-H2B...O2 (1)	$143.27(0.37)$
N1...O1 (2)	$2.842(.008)$	N1-H1B...O1 (2)	$162.95(0.38)$
N2...O1 (2)	$2.963(.007)$	N2-H2C...O1 (2)	$131.10(0.38)$

Equivalent positions: (0) $\mathrm{x}, \mathrm{y}, \mathrm{z}$
(1) $-x+1,+y+1 / 2,-z+1 / 2$
(2) $-x+1,-y+1,-z+1$

Figure S1. View of the packing looking down the c axis of the unit cell (above) and lateral view of the same image in which the hydrophobic tails protruding from both sides of the sheet are apparent (below).

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectra of 1a (upper spectrum: fresh solution; lower spectrum: after 3 d). Solvent: phosphate buffer (PB) 100 mM in $\mathrm{D}_{2} \mathrm{O}$. The same results were obtained either when the samples were maintained in the dark or exposed to natural daylight cycles.

Figure S3. ${ }^{1}$ H NMR spectra of 2a (upper spectrum: fresh solution; lower spectrum: after 3 d). Solvent: PB 100 mM in $\mathrm{D}_{2} \mathrm{O}$. The same results were obtained either when the samples were maintained in the dark or exposed to natural daylight cycles. The signals of diethyl ether (at about 1.2 and 3.7 ppm) are also present.

Figure S4. ${ }^{1}$ H NMR spectra of $\mathbf{3 a}$ (upper spectrum: fresh solution; lower spectrum: after 3 d). Solvent: PB 100 mM in $\mathrm{D}_{2} \mathrm{O}$. The same results were obtained either when the samples were maintained in the dark or exposed to natural daylight cycles. The signals of DMF (at about 3 ppm) are also present.

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4 a}$ (upper spectrum: fresh solution; lower spectrum: after 3 d). Solvent: PB 100 mM in $\mathrm{D}_{2} \mathrm{O}$. The same results were obtained either when the samples were maintained in the dark or exposed to natural daylight cycles. The signals of diethyl ether (at about 1.2 and 3.7 ppm) are also present.

Figure S6. ${ }^{1}$ H NMR spectra of $\mathbf{5 a}$ (upper spectrum: fresh solution; lower spectrum: after $\mathbf{3}$ d). Solvent: PB 100 mM in $\mathrm{D}_{2} \mathrm{O}$. The same results were obtained either when the samples were maintained in the dark or exposed to natural daylight cycles. The signals of diethyl ether (at about 1.2 and 3.7 ppm) are also present.

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 b}$ maintained in the dark (upper spectrum: fresh solution; lower spectrum: after 3 d).). Solvent: PB 100 mM in $\mathrm{D}_{2} \mathrm{O}$.

Figure S8. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 b}$ exposed to natural daylight cycles (upper spectrum: fresh solution; lower spectrum: after 3 d). Solvent: PB 100 mM in $\mathrm{D}_{2} \mathrm{O}$.

Figure S9. NMR spectra of $\mathbf{2 b}$ maintained in the dark (upper spectrum: fresh solution; lower spectrum: after 3 d). Solvent: PB 100 mM in $\mathrm{D}_{2} \mathrm{O}$.

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 b}$ exposed to natural daylight cycles (upper spectrum: fresh solution; lower spectrum: after 3 d). Solvent: PB 100 mM in $\mathrm{D}_{2} \mathrm{O}$.

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectra of 3b (upper spectrum: fresh solution; lower spectrum: after 3 d). Solvent: PB 100 mM in $\mathrm{D}_{2} \mathrm{O}$. The same results were obtained either when the samples were maintained in the dark or exposed to natural daylight cycles.

Figure S12. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4 b}$ (upper spectrum: fresh solution; lower spectrum: after 3 d). Solvent: PB 100 mM in $\mathrm{D}_{2} \mathrm{O}$. The same results were obtained either when the samples were maintained in the dark or exposed to natural daylight cycles.

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{5 b}$ (upper spectrum: fresh solution; lower spectrum: after 3 d). Solvent: PB 100 mM in $\mathrm{D}_{2} \mathrm{O}$. The same results were obtained either when the samples were maintained in the dark or exposed to natural daylight cycles.

Figure S14. RP-HPLC chromatograms (eluent: $15 \mathrm{mM} \mathrm{HCOOH} / \mathrm{MeOH} 70: 30$) of the reduction of 1a with ascorbic acid (AsA) ([Pt $=0.5 \mathrm{mM},[\mathrm{AsA}]=5 \mathrm{mM})$ in HEPES buffer ($2 \mathrm{mM}, \mathrm{pH} 7.5$). The peak of $\mathbf{1 a}(4.1 \mathrm{~min})$ decreases over the time, whereas a new peak at 3.8 min increases (its ESI-MS corresponds to $\left[\mathrm{Pt}(\text { acetamidato- } \mathrm{N})\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$together with fragmentations of hydrolyzed cisplatin). In the region inside the circle, some different peaks overlap (HEPES buffer, cisplatin and [$\mathrm{Pt}($ acetamidato- N$\left.\left.) \mathrm{Cl}\left(\mathrm{NH}_{3}\right)_{2}\right]\right)$. The presence of this last species is confirmed by the chromatograms of the other a complexes, as in the case of 3a (see Fig. S16), where this peak (4.06 min) is not overlapped to that of the original $\mathrm{Pt}(\mathrm{IV})$ complex. The ESI-MS spectrum of $[\mathrm{Pt}($ acetamidato$\left.N) \mathrm{Cl}\left(\mathrm{NH}_{3}\right)_{2}\right]$ is reported in Fig. S24.

Figure S15. RP-HPLC chromatograms (eluent: $15 \mathrm{mM} \mathrm{HCOOH} / \mathrm{MeOH} 90: 10$) of the reduction of 2a with AsA $([P t]=0.5 \mathrm{mM},[$ AsA $]=5 \mathrm{mM})$ in HEPES buffer $(2 \mathrm{mM}, \mathrm{pH} 7.5)$. The peak of 2a slightly decreases but overlaps that of AsA. In the region inside the circle, some different peaks overlap (HEPES buffer, cisplatin and its hydrolyzed derivatives).

Figure S16. RP-HPLC chromatograms (eluent: $15 \mathrm{mM} \mathrm{HCOOH} / \mathrm{MeOH} 70: 30$) of the reduction of 3a with AsA $([\mathrm{Pt}]=0.5 \mathrm{mM},[\mathrm{AsA}]=5 \mathrm{mM})$ in HEPES buffer $(2 \mathrm{mM}, \mathrm{pH} 7.5)$. The peak at 4.06 min , not overlapped to that of the original $\mathrm{Pt}(\mathrm{IV})$ complex (9.53 min), is compatible with [$\mathrm{Pt}($ acetamidato- N$\left.) \mathrm{Cl}\left(\mathrm{NH}_{3}\right)_{2}\right]$, as indicated by the corresponding ESI-MS spectrum (Fig. S24). In the region inside the circle, HEPES buffer and cisplatin overlap.

Figure S17. RP-HPLC chromatograms (eluent: $15 \mathrm{mM} \mathrm{HCOOH} / \mathrm{MeOH} 50: 50$) of the reduction of $\mathbf{4 a}$ with AsA $([\mathrm{Pt}]=0.5 \mathrm{mM},[\mathrm{AsA}]=5 \mathrm{mM})$ in HEPES buffer $(2 \mathrm{mM}, \mathrm{pH} 7.5)$. The peak of $\mathbf{4 a}$ slightly decreases over the time. In the region inside the circle, some different peaks overlap (HEPES buffer, cisplatin and its hydrolyzed derivatives).

Figure S18. RP-HPLC chromatograms (eluent: $15 \mathrm{mM} \mathrm{HCOOH} / \mathrm{MeOH} 30: 70$) of the reduction of $\mathbf{5 a}$ with AsA $([\mathrm{Pt}]=0.5 \mathrm{mM},[\mathrm{AsA}]=5 \mathrm{mM})$ in HEPES buffer $(2 \mathrm{mM}, \mathrm{pH} 7.5)$. The peak of $\mathbf{5 a}$ slightly decreases over the time. In the region inside the circle, some different peaks overlap (HEPES buffer, cisplatin and its hydrolyzed derivatives).

Figure S19. RP-HPLC chromatograms (eluent: $15 \mathrm{mM} \mathrm{HCOOH} / \mathrm{MeOH} 90: 10$) of the reduction of $\mathbf{1 b}$ with AsA $([P t]=0.5 \mathrm{mM},[\mathrm{AsA}]=5 \mathrm{mM})$ in HEPES buffer $(2 \mathrm{mM}, \mathrm{pH} 7.5)$. The peak of $\mathbf{1 b}$ decreases over the time, whereas new peaks increases in the region inside the circle, where some different peaks overlap (HEPES buffer, cisplatin and its hydrolyzed species).

Figure S20. RP-HPLC chromatograms (eluent: $15 \mathrm{mM} \mathrm{HCOOH} / \mathrm{MeOH} 90: 10$) of the reduction of $\mathbf{2 b}$ with AsA $([P t]=0.5 \mathrm{mM},[\mathrm{AsA}]=5 \mathrm{mM})$ in HEPES buffer $(2 \mathrm{mM}, \mathrm{pH} 7.5)$. The peak of $\mathbf{2 b}$ undergoes a very little decrease over the time. In the region inside the circle, some different peaks overlap (HEPES buffer, cisplatin and its hydrolyzed derivatives).

Figure S21. RP-HPLC chromatograms (eluent: $15 \mathrm{mM} \mathrm{HCOOH} / \mathrm{MeOH} 70: 30$) of the reduction of 3b with AsA $([P t]=0.5 \mathrm{mM},[\mathrm{AsA}]=5 \mathrm{mM})$ in HEPES buffer $(2 \mathrm{mM}, \mathrm{pH} 7.5)$. The peak of $\mathbf{3 b}$ slightly decreases over the time. In the region inside the circle, some different peaks overlap (HEPES buffer, cisplatin and its hydrolyzed derivatives).

Figure S22. RP-HPLC chromatograms (eluent: $15 \mathrm{mM} \mathrm{HCOOH} / \mathrm{MeOH} 50: 50$) of the reduction of $\mathbf{4 b}$ with AsA $([\mathrm{Pt}]=0.5 \mathrm{mM},[$ AsA $]=5 \mathrm{mM})$ in HEPES buffer $(2 \mathrm{mM}, \mathrm{pH} 7.5)$. The peak of $\mathbf{4 b}$ slightly decreases over the time. In the region inside the circle, some different peaks overlap (HEPES buffer, cisplatin and its hydrolyzed derivatives).

Figure S23. RP-HPLC chromatograms (eluent: $15 \mathrm{mM} \mathrm{HCOOH} / \mathrm{MeOH} 30: 70$) of the reduction of $\mathbf{5 b}$ with AsA $([\mathrm{Pt}]=0.5 \mathrm{mM},[$ AsA $]=5 \mathrm{mM})$ in HEPES buffer $(2 \mathrm{mM}, \mathrm{pH} 7.5)$. The peak of $\mathbf{5 b}$ slightly decreases over the time. In the region inside the circle, some different peaks overlap (HEPES buffer, cisplatin and its hydrolyzed derivatives).

Figure S24. A) ESI-MS spectrum of $\left[\mathrm{Pt}(\right.$ acetamidato- N$\left.) \mathrm{Cl}\left(\mathrm{NH}_{3}\right)_{2}\right]$ obtained as byproduct of the reduction of the a complexes (see Figs. S2 and S3). The spectrum shows the peak corresponding to $[\mathrm{M}+\mathrm{H}]^{+}$at $324.3 \mathrm{~m} / \mathrm{z}$, and its fragmentations $\left[\mathrm{M}-\mathrm{Cl}+\mathrm{H}_{2} \mathrm{O}\right]^{+}$at $306.2 \mathrm{~m} / \mathrm{z}$ and $[\mathrm{M}-\mathrm{Cl}+\mathrm{HCOOH}]^{+}$at $334.3 \mathrm{~m} / \mathrm{z}$. B) MS simulation for $\mathrm{C}_{2} \mathrm{H}_{11} \mathrm{ClN}_{3} \mathrm{OPt}$ as $[\mathrm{M}+\mathrm{H}]^{+}$.

Figure S25. $\left[{ }^{1} \mathrm{H},{ }^{15} \mathrm{~N}\right]$ HSQC spectrum of the reduction of $\mathbf{1 a}(20 \mathrm{mM})$ in the presence of AsA (40 mM) in 80 mM HEPES with $10 \% \mathrm{v} / \mathrm{v}_{2} \mathrm{O}$ and $5 \mathrm{mM}^{\left[\mathrm{Cl}^{-}\right]}$after 1 h (left) and 4 h (right) reaction time, respectively.

Figure S26. $\left[{ }^{1} \mathrm{H},{ }^{15} \mathrm{~N}\right]$ HSQC spectrum of the reduction of $\mathbf{1 b}(20 \mathrm{mM})$ in the presence of AsA (40 mM) in 80 mM HEPES with $10 \% \mathrm{v} / \mathrm{v}_{2} \mathrm{O}$ and $\left.5 \mathrm{mM} \mathrm{[}^{-1}\right]$ after 4 h reaction time.

Figure S27. ${ }^{195} \mathrm{Pt}$ NMR spectra of reduction of $\mathbf{1 a}(20 \mathrm{mM})$ in the presence of AsA $(40 \mathrm{mM})$ in 80 mM HEPES with $10 \% \mathrm{v} / \mathrm{v}_{2} \mathrm{O}$ and $5 \mathrm{mM}\left[\mathrm{Cl}^{-}\right]$after 6 h (lower spectrum) and 18 h (upper spectrum) reaction time.

Table S3. Miscellaneous experimental chemical and biological data of the complexes under investigation.

Compound	solubility $[\mathbf{m M}]^{[\mathbf{a}]}$	$\mathbf{E}_{\mathbf{p}}[\mathbf{V}]^{[\mathbf{b}]}$	$\mathbf{t}_{\mathbf{R}}[\mathbf{m i n}]^{[\mathbf{c}]}$	$\mathbf{I C}_{\mathbf{5 0}}\left[\boldsymbol{\mu} \mathbf{M}^{[\mathrm{d}]}\right.$	$\mathbf{A R}^{[\mathrm{d}]}$
cisplatin	-	-	5.2	0.48 ± 0.11	1.40 ± 0.57
$\mathbf{2 a}$	108 ± 9	-0.660	5.4	33.1 ± 4.7	0.77 ± 0.21
$\mathbf{3 a}$	37.9 ± 0.1	-0.688	6.8	11.8 ± 1.9	0.63 ± 0.15
$\mathbf{4 a}$	9.6 ± 0.1	-0.681	14.4	0.20 ± 0.02	4.44 ± 0.11
$\mathbf{5 a}$	1.8 ± 0.1	-0.702	56.8	0.04 ± 0.01	8.47 ± 0.94
$\mathbf{2 b}$	105 ± 10	-0.486	5.5	$12.1 \pm 5.2^{[\mathrm{ec}]}$	0.26 ± 0.13
$\mathbf{3 b}$	27.0 ± 0.4	-0.512	6.7	2.85 ± 0.36	0.77 ± 0.13
$\mathbf{4 b}$	8.1 ± 0.1	-0.547	14.1	0.31 ± 0.15	5.08 ± 0.81
$\mathbf{5 b}$	3.8 ± 0.2	-0.526	54.4	0.11 ± 0.05	7.80 ± 1.69

${ }^{[a]}$ The water solubility data were determined from saturated solutions of the $\operatorname{Pt}(\mathrm{IV})$ complexes in milliQ water. After 24 h stirring in the dark at $25^{\circ} \mathrm{C}$, the solid residue was filtered off ($0.20 \mu \mathrm{~m}$ regenerated cellulose filters) and the Pt content of the solutions was determined by means of ICP-OES.
${ }^{[b]}$ Reduction peak potentials $\left(\mathrm{E}_{\mathrm{p}}\right)$ were measured at a glassy carbon working electrode in ethanol solutions containing $0.1 \mathrm{M}\left[\mathrm{NBu}_{4}\right]\left[\mathrm{ClO}_{4}\right]$ as supporting electrolyte. Scan rate $=$ $0.2 \mathrm{~V} \mathrm{~s}^{-1}$. All potentials are reported in $\mathrm{V} v s . \mathrm{Ag} / \mathrm{AgCl}, 3 \mathrm{M} \mathrm{KCl}$.
${ }^{[c]}$ HPLC retention times (t_{R}) were measured on a C18 column, by using a mobile phase containing 15 mM aqueous HCOOH and $\mathrm{CH}_{3} \mathrm{OH}$ in 1:1 ratio.
${ }^{\text {[d] }}$ Half-inhibitory concentrations (IC_{50}) and accumulation ratios (AR) were measured on A2780 ovarian cancer cell lines, after 72 h and 4 h of treatment, respectively.
${ }^{[e]}$ data from I. Zanellato, I. Bonarrigo, D. Colangelo, E. Gabano, M. Ravera, M. Alessio and D. Osella, J. Inorg. Biochem., 2014, 140, 219-227.
See Experimental section for more details.

[^0]: * Corresponding author; e-mail address: domenico.osella@uniupo.it.

