Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Supporting information

New Eu³⁺-Activated Perovskite La_{0.5}Na_{0.5}TiO₃ Phosphors in Glass for

Warm White Light Emitting Diodes

Jiasong Zhong¹, Daqin Chen^{1, 2, *}, Yang Zhou¹, Zhongyi Wan¹, Mingye Ding¹, Wangfeng Bai¹,

Zhengguo Ji¹

¹College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China

²State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese

Academy of Sciences, Fuzhou, Fujian 350002, PR China

Fig. S1 Different approaches for obtaining white light from LEDs: conventional type and the target of our study.

Fig. S2 (a) XRD patterns of LNT: xEu^{3+} ($0 \le x \le 0.3$). (b) Enlarge patterns of 2 θ from 32° to 34° . Simulated XRD pattern of cubic La_{0.5}Na_{0.5}TiO₃ according to JCPDS no.39-0065 is presented by tick marks at the bottom of the figure as reference.

Fig. S3 PL spectra of LNT: xEu^{3+} (0.025 $\le x \le 0.3$) phosphors with different amounts of Eu^{3+} . Inset show the asymmetry ratios as a function of Eu^{3+} concentration of the LNT: xEu^{3+} phosphors.

Fig. S4 The luminescence decay curves of LNT: xEu^{3+} (0.025 $\leq x\leq$ 0.3) phosphors (excited at 465 nm, monitored at 615 nm). Inset is the dependence of the luminescence lifetime on Eu^{3+} doping concentration.

Fig. S5 Temperature-dependent PL spectra of LNT:0.225Eu³⁺ phosphor (λ_{ex} = 465

nm)

Fig. S6 Transmittance spectra of the blank glass and LNT:Eu³⁺ and YAG:Ce³⁺ co-doped PiG.