Electronic Supplementary Information for:

Theoretical Insights into the Origin of Magnetic Exchange and Magnetic Anisotropy in {Re^{IV}-M^{II}} (M=Mn, Fe, Co, Ni and Cu) Single Chain Magnets

Saurabh Kumar Singh, ‡^a Kuduva R. Vignesh, ‡^b Velloth Archana,^{a, c} and Gopalan Rajaraman^{a*}

a) Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India. Phone: +91-22-25767183, Fax: +91-22-25767152, and E-mail: rajaraman@chem.iitb.ac.in

b) IITB-Monash Research Academy, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.

c)present address: Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachi-Oji, Tokyo 192-0397, Japan.

These authors contributed equally to the work.

Re/Mn	d _{xy}	d _{xz}	d _{yz}	$d_{x}^{2} - y^{2}$	d_z^2
d _{xy}	-0.0052	-0.0948	-0.0576	-0.0184	-0.0134
d _{xz}	0.0027	0.0968	0.0167	-0.0199	0.0483
d _{yz}	-0.0143	-0.0505	-0.1305	0.0093	0.0234
$d_{x^2-y^2}^{2}$	0.0007	0.0295	-0.0002	0.0260	-0.0326
d_z^2	0.0012	-0.0277	0.0035	-0.0347	0.0604

Table ST1: Overlap integral values corresponding to complex 1

Figure SF1: overlap between d_{yz} - d_{yz} orbitals corresponding to complex 1.

Re/Fe	d _{xz}	d _{xy}	$d_{x}^{2} - v^{2}$	d_z^2
d _{xy}	0.0213	0.0736	0.0397	-0.0355
d _{xz}	0.0530	0.0878	-0.0357	0.0249
d _{yz}	-0.0326	-0.0164	-0.0486	-0.0198
$d_{x^{2}-y^{2}}$	0.1223	0.1313	0.0383	0.0032
d_z^2	0.0017	0.0507	-0.0997	0.0013

Table ST2: Overlap integral values corresponding to complex 2

Table ST3: Overlap integral values corresponding to complex 3

Re/Co	d _{xz}	$d_{x^{2}-y^{2}}$	d_z^2
d _{xy}	0.0024	0.0621	-0.0123
d _{xz}	0.0127	-0.0642	0.0321
d _{yz}	-0.0014	-0.0446	-0.0744
$d_{x^{2}-y^{2}}^{2}$	0.0788	0.1438	0.0414
d_z^2	0.0013	-0.0814	0.0019

Ni/Re	d _{xy}	d _{xz}	d _{yz}	$d_{x^{2}-y^{2}}$	d_z^2
$d_{x^{2}-y^{2}}^{2}$	0.0008	0.0010	0.0069	0.0058	-0.0014
d_z^2	0.0000	0.0220	0.0022	-0.0039	-0.0478

Table ST4: Overlap integral values corresponding to complex 4

Table ST5: Overlap integral values corresponding to complex 5

Cu/Re	d _{xy}	d _{xz}	d _{yz}	$d_{x^{2}-y^{2}}$	d_z^2
$d_{x^{2}-y^{2}}$	0.0012	0.0068	-0.0007	-0.0017	0.0125

Figure SF2: overlap between $d_z^2 - d_{xz}$ orbitals corresponding to complex 5.

Table ST6. DFT computed spin densities of {ReMn} complex in HS and BS states.

[
	HS	BS
Mn	4.8142	4.8124
Re	2.4391	-2.4366
Cl	0.12-0.15	-(0.12-0.15)
C in -CN	-0.1	0.1
N in -CN	0.11 & 0.08	-0.08 & -0.11

	HS	BS
Fe	3.7958	3.7911
Re	2.4607	-2.4582
Cl	0.11-0.14	-(0.11-0.14)
C in -CN	-0.1&-0.08	0.1&0.08
N in -CN	0.11 & 0.11	-0.07 & -0.11

Table ST7: DFT computed spin densities of {ReFe} complex in HS and BS states.

Table ST8: DFT computed spin densities of {ReCo} complex in HS and BS states.

	HS	BS
Со	2.7710	2.7686
Re	2.4692	-2.4656
Cl	0.12-0.14	-(0.12-0.14)
C in -CN	-0.1&-0.07	0.1&0.07
N in -CN	0.11 & 0.12	-0.05 & -0.11

Table ST9: DFT computed spin densities of {ReNi} complex in HS and BS states.

	HS	BS
Ni	1.736925	-1.736700
Re	2.4694	2.467349
Cl	0.11-0.14	0.11-0.14
C in -CN	-0.1&-0.08	0.1&0.08
N in -CN	0.11&0.12	-0.07 & -0.11

Table ST10: DFT computed spin densities of {ReCu} complex in HS and BS states.

	HS	BS
Cu	0.6442	-0.6456
Re	2.4455	2.4426
Cl	0.12-0.14	0.12-0.14
В	0.00007	-0.00007
C in -CN	-0.1	-0.1 & -0.07
N in -CN	0.11 & 0.18	0.11 & 0.01

Table ST11: DFT computed vs. expected spin contamination values for selected states with their corresponding spin density values and the exchange (*J*) values for trinuclear complex **5b**.

	Energies	Calculated	J values	Spin	Spin	Spin
	(Hatrees)	<s<sup>2></s<sup>	(cm^{-1})	density on	density on	density on
				M ₁	Re	M ₂
		Comple	x 5a (Cu-Re-	Cu)		
HS	-6976.630012	8.770		0.6453	2.4059	0.6490
BS1	-6976.629672	4.7683	$J_1 = 19.01$	-0.6460	2.4019	0.6489
BS2	-6976.629681	4.7680	$J_2 = 18.52$	0.6452	2.4013	-0.6499
BS2	-6976.629328	2.7665	$J_3 = -0.70$	-0.6461	2.3974	-0.6499

Scheme S1. Trinuclear complex 5b possessing three different exchange interactions and chosen spin states to extract the *J* values.

Table ST12: Exponential function employed for fitting and the relevant fitting parameters corresponding to the correlation developed for Re-C bond lengths.

	1	5
Exponential function	$y = y_0 + A^*$	exp(R0*x)
y ₀	2.51452	1.38732
А	-4922.08907	28552.5656
R0	-3.01862	-3.47101

 Table ST13: Overlap integral values corresponding to complex 5 when Re-C distance is 2.4 Å.

Cu/Re	d _{xy}	d _{xz}	d _{yz}	$d_{x^{2}-y^{2}}$	d_z^2
$d_{x^{2}-y^{2}}$	0.0197	0.0257	0.0020	0.0055	0.0311

Table ST14: Overlap integral values corresponding to complex 5 when Re-C distance is 1.8 Å.

Cu/Re	d _{xy}	d _{xz}	d _{yz}	$d_{x^{2}-y^{2}}$	d_z^2
$d_{x^{2}-y^{2}}$	0.0022	0.0116	0.0284	0.0143	0.0185

Table ST15: Exponential function employed for fitting and the relevant fitting parameters corresponding to the correlation developed for M-N bond lengths (M=Mn(1) and Cu(5)).

	1	5
Exponential function	$y = y_0 +$	A*exp(R0*x)
y ₀	-41.2566	-0.26772
А	205.45846	-131579.85855
R0	-0.60825	-4.56458

Table ST16: Exponential function employed for fitting and the relevant fitting parameters corresponding to the correlation developed for Re-C-N bond angle.

	1	5		
Exponential function	$y = y_0 + A^* exp(R0^*x)$			
y ₀	-4.92478	20.36184		
А	-0.00078	-17096.38802		
R0	0.03794	-0.06193		

Table ST17: Exponential function employed for fitting and the relevant fitting parameters corresponding to the correlation developed for M-N-C bond angle.

	1	5		
Exponential function	$y = y_0 + A^* \exp(R0^* x)$			
y ₀	-3.66512	22.70344		
А	-1917.19852	-226940.94186		
R0	-0.04421	-0.06452		

Table ST18: Overlap integral values corresponding to complex **5** when Cu-N-C angle is 130 degree

Cu/Re	d _{xy}	d _{xz}	d _{vz}	$d_{x^{2}-y^{2}}^{2}$	d_z^2
$d_{x^{2}-y^{2}}$	0.0020	0.1131	0.0188	-0.0016	0.0110

Table ST19: Overlap integral values corresponding to complex **5** when Cu-N-C angle is 180 degree

	Cu/Re	d _{xy}	d_{xz}	d _{yz}	$d_{x^{2}-y^{2}}$	d_z^2	
Table	$d_{x^{2}-y^{2}}$	0.0000	-0.0023	0.0040	-0.0307	0.0221	ST20 :

Atomic	Spin-	free states	Spin-	orbit states	D_{cal}	$ E_{cal} $	g _{cal}
Terms	CASSCF	MS-CASPT2	CASSCF	MS-CASPT2	(D_{exp})	(L_{exp})	(gexp)
${}^{4}A_{2}$	0.0	0.0	0.0	0.0		MS-CASPT2	values
² E	12445.4 12470.8	7377.3 7649.2	0.0 43.3 43.3	0.0 33.9 33.9	+16.06 cm ⁻¹ (+11 cm ⁻¹)	3.7 cm ⁻¹ (3.2 cm ⁻¹)	1.756, 1.751, 1.729 (1.89, 1.89, 1.58)
² T ₁	12517.9 12584.6 13414.7	8351.5 8419.6 8554.3	11164.9 11164.9 12134.1 12134.1	6570.5 6570.5 7923.0 7923.0			
	20279.4	14439.9	12825.8	8823.2		CASSCF va	lues
² T ₂	20820.7 20967.3	15965.5 16224.1	12825.8 13369.2 13369.2	8823.2 8990.6 8990.6	-20.97 cm ⁻¹ (+11 cm ⁻¹)	1.25 cm ⁻¹ (3.2 cm ⁻¹)	1.827, 1.825, 1.78 (1.89, 1.89, 1.58)
⁴ T ₂	28840.4 34441.2 34734.1	30778.3 36080.6 36212.4					

CASSCF/PT2+RASSI computed energies of lowest spin-free and spin-orbit states along D, |E| and g-tensor (g_{xx}, g_{yy}, g_{zz}) along with experimental observed values (provided in parenthesis)

The most common approximation is the leading J_{AB} term, because the exchange interaction is quite large ranging from few wave numbers to hundreds of wave numbers in transition metal complexes. In case of strong exchange limit, the zfs of the spin state S can be resulted by vector coupling of two spins S_{Co} and S_{Re} which is given by the following equation,

$$D_{total} = d_{Co}D_{Co} + d_{Re}D_{Re} + d_{CoRe}D_{CoRe}$$

Where the D_{Co} is the single-ion anisotropy of Co(II) ion, D_{Re} is the single-ion anisotropy of Re(IV) ion, D_{CoRe} is the anisotropy arises due to exchange between these two ions. The d coefficients are $d_{Co}=1/5$, $d_{Re}=1/5$ and $d_{CoRe}=3/10$ (see Bencini, Gatteschi, Dante, Electron Paramagnetic Resonance of Exchange Coupled Systems, Springer 2011).

$$D_{total} = \frac{1}{5}D_{Co} + \frac{1}{5}D_{Re} + \frac{3}{10}D_{CoRe}$$