Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Fully Ir(III) tetrazolate soft salts: the road to white-emitting ion pairs

Valentina Fiorini,^{a*} Andrea D'Ignazio,^a Karen D. M. Magee,^b Mark I. Ogden,^b Massimiliano Massi,^{b*} and Stefano Stagni ^{a*}

^aDepartment of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy

Electronic Supplementary Information - ESI

^b Department of Chemistry, Curtin University, GPO Box U 1987, Perth, Australia, 6845

General considerations. All the reagents and solvents were obtained commercially (e.g. Aldrich) and used as received without any further purification, unless otherwise specified. All the reactions were carried out under an argon atmosphere following Schlenk protocols. Where required, the purification of the Ir(III) complexes was performed via column chromatography with the use of neutral alumina as the stationary phase. ESI-mass spectra were recorded using a Waters ZQ-4000 instrument (ESI-MS, acetonitrile as the solvent). Nuclear magnetic resonance spectra (consisting of ¹H and ¹³C) were always recorded using a Varian Mercury Plus 400 instrument (¹H, 400.1; ¹³C, 101.0 MHz.) at room temperature. ¹H and ¹³C chemical shifts were referenced to residual solvent resonances.

Photophysics. Absorption spectra were recorded at room temperature using a Perkin Elmer Lambda 35 UV/vis spectrometer. Uncorrected steady-state emission and excitation spectra were recorded on an Edinburgh FLSP920 spectrometer equipped with a 450 W xenon arc lamp, double excitation and single emission monochromators, and a Peltier-cooled Hamamatsu R928P photomultiplier tube (185–850 nm). Emission and excitation spectra were acquired with a cut-off filter (395 nm) and corrected for source intensity (lamp and grating) and emission spectral response (detector and grating) by a calibration curve supplied with the instrument. The wavelengths for the emission and excitation spectra were determined using the absorption maxima of the MLCT transition bands (emission spectra) and at the maxima of the emission bands (excitation spectra). Quantum yields (Φ) were determined using the optically dilute method by Crosby and Demasⁱ at excitation wavelength obtained from absorption spectra on a wavelength scale [nm] and compared to the reference emitter by the following equation:ⁱⁱ

$$\phi_s = \phi_r \left[\frac{A_r(\lambda_r)}{A_s(\lambda_s)} \right] \left[\frac{I_r(\lambda_r)}{I_s(\lambda_s)} \right] \left[\frac{n_s^2}{n_r^2} \right] \left[\frac{D_s}{D_r} \right]$$

where A is the absorbance at the excitation wavelength (λ), I is the intensity of the excitation light at the excitation wavelength (λ), n is the refractive index of the solvent, D is the integrated intensity of the luminescence, and Φ is the quantum yield. The subscripts r and s refer to the reference and the sample, respectively. A stock solution with an absorbance > 0.1 was prepared, then two dilutions were obtained with dilution factors of 20 and 10, resulting in absorbances of about 0.02 and 0.08 respectively. The Lambert-Beer law was assumed to remain linear at the concentrations of the solutions. The degassed measurements were obtained after the solutions were bubbled for 10 minutes under Ar atmosphere, using a septa-sealed quartz cell. Air-

equilibrated $[Ru(bpy)_3]Cl_2/H_2O$ solution $(\Phi=0.028)^{iii}$ was used as reference. The quantum yield determinations were performed at identical excitation wavelengths for the sample and the reference, therefore deleting the $I(\lambda_\Gamma)/I(\lambda_S)$ term in the equation. Emission lifetimes (τ) were determined with the single photon counting technique (TCSPC) with the same Edinburgh FLSP92O spectrometer using pulsed picosecond LED (EPLED 360, fhwm < 800 ps) as the excitation source, with repetition rates between 1 kHz and 1 MHz, and the above-mentioned R928P PMT as detector. The goodness of fit was assessed by minimizing the reduced χ^2 function and by visual inspection of the weighted residuals. To record the 77 K luminescence spectra, the samples were put in quartz tubes (2 mm diameter) and inserted in a special quartz dewar filled with liquid nitrogen. The solvent used in the preparation of the solutions for the photophysical investigations was of spectrometric grade. Experimental uncertainties are estimated to be ±8% for lifetime determinations, ±20% for quantum yields, and ±2 nm and ±5 nm for absorption and emission peaks, respectively.

Ligand synthesis

Warning! Tetrazole derivatives are used as components for explosive mixtures.^{iv} In this lab, the reactions described here were only run on a few grams scale and no problems were encountered. However, great caution should be exercised when handling or heating compounds of this type.

Following the general method reported by Koguro and coworkers, vi tetrazole ligands [H-**Tph**] 5-phenyl-1*H*-tetrazole, [H-**TphCN**] 4-(1*H*-tetrazol-5-yl)benzonitrile, and [H-**TPYZ**] 2-(1*H*-tetrazol-5-yl)pyrazine, were obtained in quantitative yield.

[H-Tph] ¹H-NMR (DMSO d^6 , 400 MHz) δ (ppm) = 8.06 - 8.03 (m, 2H), 7.62 -7.60 (m, 3H). [H-TphCN] ¹H-NMR (DMSO d^6 , 400 MHz) δ (ppm) = 8.06 (d, 2H, J_{H-H} = 3.99 Hz) 8.31 (d, 2H, J_{H-H} = 7.99 Hz). [H-TPYZ] ¹H-NMR, 400 MHz, DMSO- d^6 δ (ppm) = 9.39 (m, 1H); 8.87 (m, 2H).

General Procedure for the Preparation of the Anionic $[Ir(L)_2]^-/[F_2Ir(L)_2]^-$ Type Complexes

In a 50 mL two neck round bottom flask equipped with a stirring bar, 0.100 g (1 equiv.) of dichlorobridged iridium dimer and 10 equiv. of the desired tetrazole ligand were added to a 3:1 solution of dichloromethane/ethanol. Then, 10 equiv. of Et₃N were added, and the resulting mixture was stirred at reflux for 24 h. A 1:1 EP/Et₂O solution was added to the mother liquor and the respective products, bright yellow solids, precipitated from the solution, collected by filtration and washed with Et₂O (2x10 mL).

Yield: $[Ir(Tph)_2]^-[Et_3NH]^+ = 0.120 \text{ g}$; 72.1%. $[F_2Ir(Tph)_2]^-[Et_3NH]^+ = 0.133 \text{ g}$; 74.3%. $[Ir(TphCN)_2]^-[Et_3NH]^+ = 0.133 \text{ g}$; 0.152 mmol; 81.7%. $[F_2Ir(TphCN)_2]^-[Et_3NH]^+ = 0.104 \text{ g}$; 55.0%.

[Ir(Tph)₂]⁻¹H-NMR (CD₃CN, 400 MHz) δ (ppm) = 6.41 (m, 2H), 6.69 (m, 2H), 6.76 (m, 2H), 7.31 (m, 2H), 7.36 (m, 4H), 7.44 (m, 2H), 7.59 (m, 2H), 7.85 (d, 4H, J_{HH} = 5.6 Hz), 7.95 (m, 4H), 10.42 (d, 2H, J_{HH} = 5.6 Hz). ¹³C-NMR (CD₃CN, 100 MHz) δ (ppm) = 168.52, 164.77, 153.34, 145.25, 137.06, 132.47, 131.07, 128.41, 128.38, 127.86, 126.00, 123.28, 121.81, 121.71, 120.55, 118.05. **ESI-MS** (m/z): [M⁻] = 791; [M⁺] = 102 (Et₃NH⁺). Anal. Calcd. for C₄₂H₄₂N₁₁Ir (893.07): C 56.48, H 4.74, N 17.25. Found: C 56.51, H 4.77, N 17.28%

[F₂Ir(Tph)₂]⁻¹H-NMR (Acetone- d^6 , 400 MHz) δ (ppm) = 5.97 (m, 2H), 6.35 (m, 2H), 7.25 (m, 2H), 7.30 (d, 4H, J_{HH} = 7.9 Hz), 7.50 (m, 2H), 7.89 (d, 4H, J_{HH} = 7.9 Hz), 8.04 (m, 2H), 8.26 (m, 2H), 10.51 (m, 2H). (Acetone- d^6 , 100 MHz) δ (ppm) = 165.03, 162.16, 153.81, 150.67, 137.88, 131.35, 128.22, 127.67, 125.99, 121.79, 121.62, 114.27, 114.10, 114.08, ESI-MS (m/z): [M⁻] = 863; [M⁺] = 102 (Et₃NH⁺). Anal. Calcd. for C₄₂H₃₈N₁₁F₄Ir (965.04): C 52.27, H 3.97, N 15.97. Found: C 52.25, H 3.99, N 16.00%

[Ir(TphCN)₂]⁻¹H-NMR (Acetone- d^6 , 400 MHz) δ (ppm) = 6.50 (m, 2H), 6.56 (m, 2H), 6.64 (m, 2H), 7.39 (m, 2H), 7.54 (m, 2H), 7.67 (d, 4H, J_{HH} = 7.9 Hz), 7.91 (m, 2H), 7.99 (m, 2H), 8.04 (d, 4H, J_{HH} = 7.6 Hz), 10.57 (m, 2H). ¹³C-NMR (Acetone- d^6 , 100 MHz) δ (ppm) = 169.98, 161.52, 154.71, 146.17, 137.52, 136.37, 133.63, 133.02, 128.91, 127.17, 123.91, 121.99, 120.96, 119.17, 118.58, 111.19. ESI-MS (m/z): [M⁻] = 841; [M⁺] = 102 (Et₃NH⁺). Anal. Calcd. for C₄₄H₄₀N₁₃Ir (943.09): C 56.04, H 4.28, N 19.31. Found: C 56.08, H 4.30, N 19.29%

[F₂Ir(TphCN)₂]⁻¹H-NMR (Acetone- d^6 , 400 MHz) δ (ppm) = 5.95 (m, 2H), 6.35 (m, 2H), 7.51 (m, 2H), 7.69 (d, 4H, J_{HH} = 7.9 Hz), 7.76 (m, 2H), 8.04 (d, 4H, J_{HH} = 7.6 Hz), 8.35 (m, 2H), 10.45 (m, 2H). ¹³C-NMR (Acetone- d^6 , 100 MHz) δ (ppm) = 166.03, 161.94, 154.66, 151.54, 138.87, 136.66, 133.97, 133.17, 133.14, 129.72, 127.55, 127.27, 127.24, 122.77, 119.57, 115.01, 111.57. **ESI-MS** (m/z): [M⁻] = 913; [M⁺] = 102 (Et₃NH⁺). Anal. Calcd. for C₄₄H₃₆N₁₃F₄Ir (1015.05): C 52.06, H 3.57, N 17.94. Found: C 52.04, H 3.59, N 17.97%

General Procedure for the Preparation of the Cationic Ir(III) complex

[IrTPYZ-Me]⁺[PF₆]⁻ was obtained according to a previously reported procedure.^{vii} Yield: 0.038 g, 61.5%.

[IrTPYZ-Me]^{+ 1}H-NMR (Acetone- d^6 , 400 MHz) δ (ppm) = 9.76 (s, 1H), 8.99 (m, 1H), 8.26 (d, 2H, J_{H-H} = 8.8 Hz), 8.11 (s, 1H), 8.02 – 7.95 (m, 3H), 7.91 – 7.85 (m, 3H), 7.15 – 6.85 (m, 6H), 6.32 – 6.27 (m, 2H), 4.61 (s, 3H). ¹³C-NMR (CD₃CN, 100 MHz) δ (ppm) = 168.48, 168.18, 166.55 (Ct), 152.62, 151.90, 151.52, 147.39, 146.72, 146.38, 145.74, 145.69, 145.30, 141.25, 140.51, 133.14, 132.77, 131.93, 131.36, 126.41, 125.98, 125.26, 125.11, 124.80, 124.38, 121.51, 121.28, 118.81, 43.47. ESI-MS (m/z): [M⁺] = 663 [M⁻] = 145 (PF₆). Anal. Calcd. for C₂₈H₂₂N₈F₆PIr (807.71): C 41.63, H 2.75, N 13.87. Found: C 41.62, H 2.77, N 13.89%

General Procedure for the Preparation of Ir(III) Soft Salts

$$X = F, Y = CN SS1$$

$$X = H, Y = CN SS2$$

$$X = H, Y = H SS3$$

$$X = H, Y = H SS4$$

$$X = H, Y = H SS4$$

The desired anionic tetrazolate complex (0.020 g, 1 equiv.) and the proper cationic tetrazolate complex (1 equiv.) were added to water (15 mL). The reaction mixture was stirred for 3 h at room temperature and then extracted with dichloromethane. The organic phase was washed repeatedly with water until the signal of the counterion Et_3NH^+ was absent in the 1H -NMR spectrum, leading to the formation of the Ir(III) soft salt in almost quantitative yield.

Table S1: Acronyms used for the presented Ir(III) Soft Salts.

Cation Anion	[IrTPYZ-Me] ⁺
[F ₂ Ir(TphCN) ₂] ⁻	SS1
[Ir(TphCN) ₂] ⁻	SS2
[Ir(Tph) ₂]-	SS3
[F ₂ Ir(Tph) ₂] ⁻	SS4

SS1 ¹**H-NMR** (CD₃CN, 400 MHz), δ (ppm): 4.47 (s, 3H cation), 5.86-5.89 (m, 2H, anion); 6.22-6.28 (m, 2H, cation), 6.37-6.43 (m, 2H, anion), 6.87-7.12 (m, 8H anion and cation overlapped), 7.45-7.48 (m, 2H, anion), 7.65-8.08 (m, 17H, anion and cation overlapped), 8.26-8.28 (m, 2H, anion), 8.78 (s, 1H, cation), 9.62 (s, 1H, cation), 10.21 (m, 2H, anion). Anal. Calcd. for $C_{66}H_{42}N_{20}F_4Ir_2 \cdot 2H_2O$ (1611.63): C 49.18, H 2.88, N 17.38. Found: C 49.25, H 2.85, N 17.42%

SS2 ¹**H-NMR** (CD₃CN, 400 MHz), δ (ppm): 4.47 (s, 3H cation), 6.22-6.26 (m, 2H, cation); 6.40-6.43 (m, 2H, anion), 6.65-6.69 (m, 2H, anion), 6.74-6.78 (m, 2H, anion), 6.89-7.12 (m, 8H anion and cation overlapped), 7.41-7.44 (m, 2H, anion), 7.57-8.01 (m, 17H, anion and cation overlapped), 8.07-8.10 (m, 2H, anion), 8.78 (s, 1H, cation), 9.63 (s, 1H, cation), 10.34 (m, 2H, anion). Anal. Calcd. for $C_{66}H_{46}N_{20}Ir_{2}$ •2 $H_{2}O$ (1539.67): C 51.48, H 3.27, N 18.19. Found: C 51.51, H 3.25, N 18.21%

SS3 ¹H-NMR (CD₃CN, 400 MHz), δ (ppm): 4.47 (s, 3H, cation), 6.22-6.27 (m, 2H, cation), 6.41-6.44 (2H, anion), 6.64-6.68 (m, 2H, anion), 6.73-6.78 (m, 2H, anion), 6.87-7.12 (m, 6H, cation), 7.27-7.45 (m, 8H anion), 7.56-7.58 (m, 2H, anion), 7.64-7.67 (m, 2H cation), 7.72-7.98 (m, 13H, anion and cation overlapped), 8.07-8.09 (m, 2H, anion), 8.78 (s, 1H, cation), 9.63 (s, 1H, cation), 10.45 (m, 2H, anion). Anal. Calcd. for $C_{64}H_{48}N_{18}Ir_2 \cdot 2H_2O$ (1489.65): C 51.60, H 3.52, N 16.92. Found: C 51.63, H 3.54, N 16.95%

SS4 ¹**H-NMR** (CD₃CN, 400 MHz), δ (ppm): 4.47 (s, 3H, cation), 5.87-5.90 (m, 2H anion), 6.22-6.27 (m, 2H, cation), 6.36-6.42 (m, 2H anion), 6.87-7.12 (m, 6H, cation), 7.29-7.49 (m, 8H anion), 7.65-7.67 (m, 2H, cation), 7.77-8.09 (m, 13H, anion and cation overlapped), 8.26-8.28 (m, 2H anion), 8.78 (s, 1H, cation), 9.62 (s, 1H, cation), 10.32 (m, 2H, anion). (Anal. Calcd. for $C_{64}H_{44}N_{18}F_4Ir_2 \cdot 2H_2O$ (1561.61): C 49.22 H 3.10, N 16.14. Found: C 49.26, H 3.05, N 16.18%

NMR and ESI-MS Spectroscopy

Figure S1: ¹H-NMR of [Ir(Tph)₂] CD₃CN, 400 MHz, r.t.

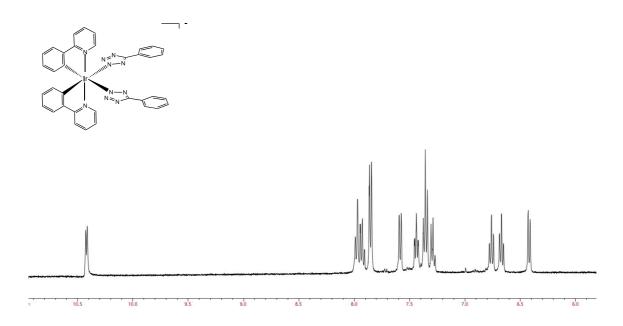


Figure S2: ¹³C-NMR of [Ir(Tph)₂]⁻ CD₃CN, 400 MHz, r.t.

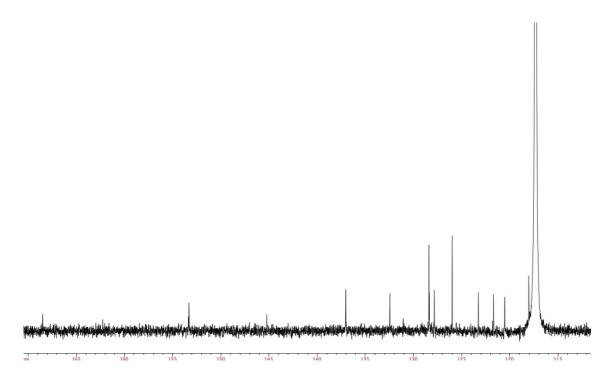


Figure S3: ¹H-NMR of [F₂Ir(Tph)₂] Acetone-d⁶, 400 MHz, r.t.

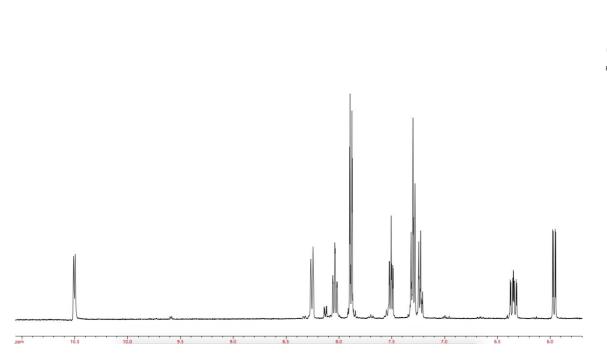


Figure S4: ¹³C-NMR of [F₂Ir(Tph)₂]⁻ Acetone-d⁶, 100 MHz, r.t.

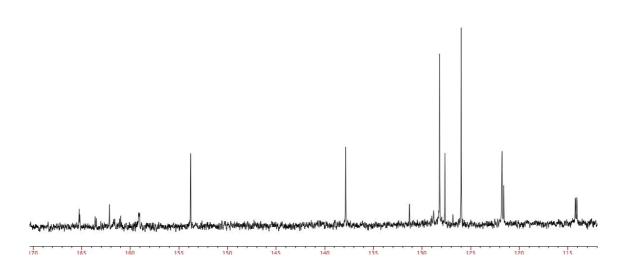


Figure S5: ¹H-NMR of [Ir(TphCN)₂] Acetone-d⁶, 400 MHz, r.t.

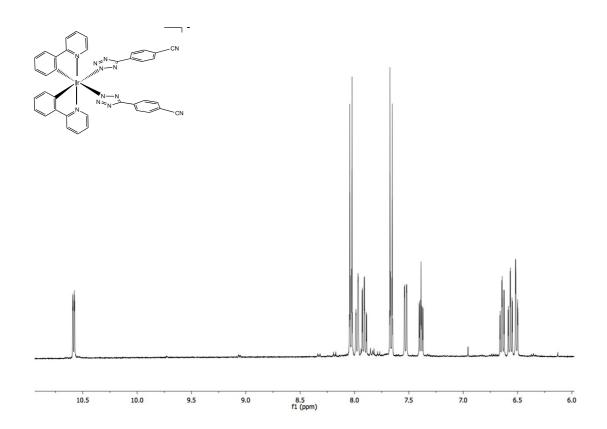


Figure S6: 13 C-NMR of [Ir(TphCN)₂]- Acetone- d^6 , 100 MHz, r.t.

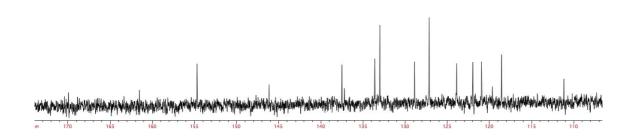


Figure S7: ¹H-NMR of [F₂Ir(TphCN)₂]⁻ Acetone-d⁶, 400 MHz, r.t.

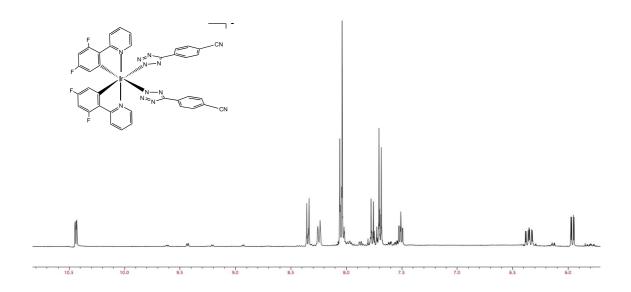


Figure S8: 13 C-NMR of $[F_2Ir(TphCN)_2]^-$ Acetone- d^6 , 100 MHz, r.t.

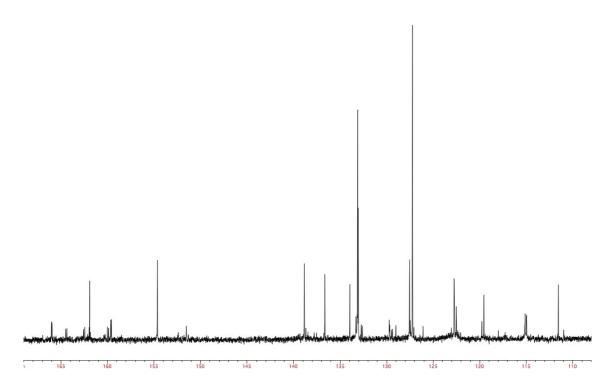


Figure S9: ¹H-NMR [IrTPYZ-Me]+ Acetone-*d*⁶, 400 MHz, r.t.

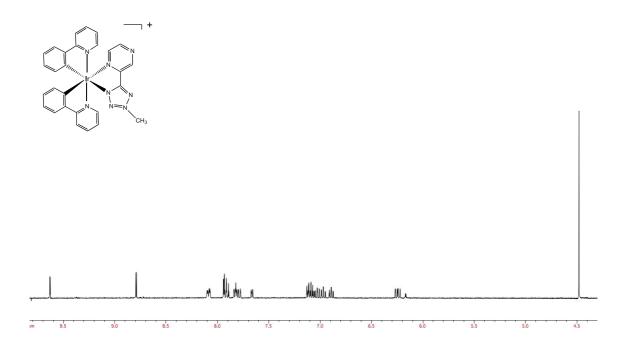


Figure S10: ¹³C-NMR [IrTPYZ-Me]+ CD₃CN, 100 MHz, r.t.

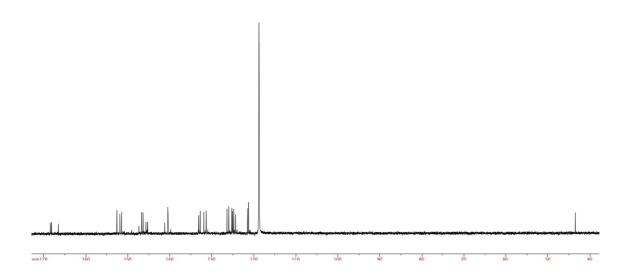
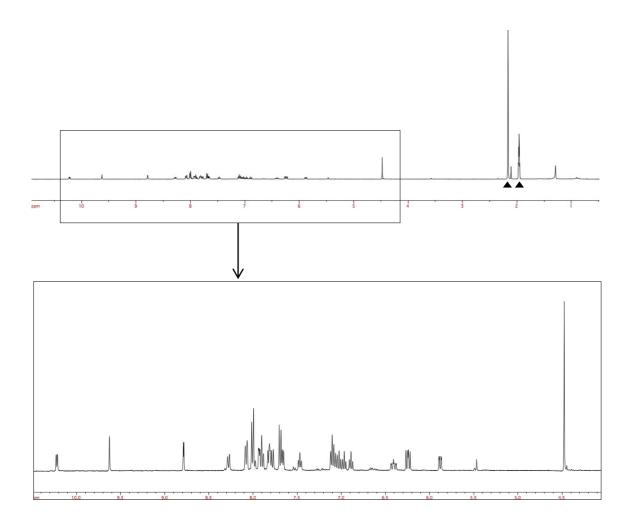
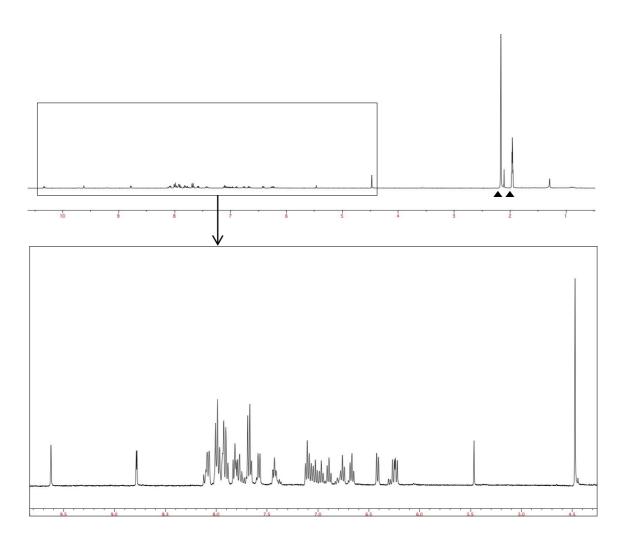




Figure S11: 1 H-NMR SS1 CD $_{3}$ CN, 400 MHz, r.t.

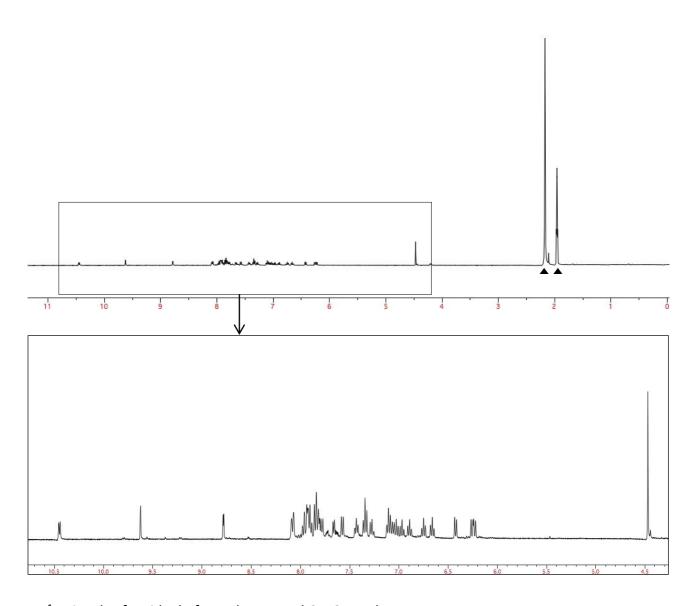

 \triangle = ¹H signals of residual of non deuterated CD₃CN and water.

Figure S12: 1 H-NMR SS2 CD $_{3}$ CN, 400 MHz, r.t.

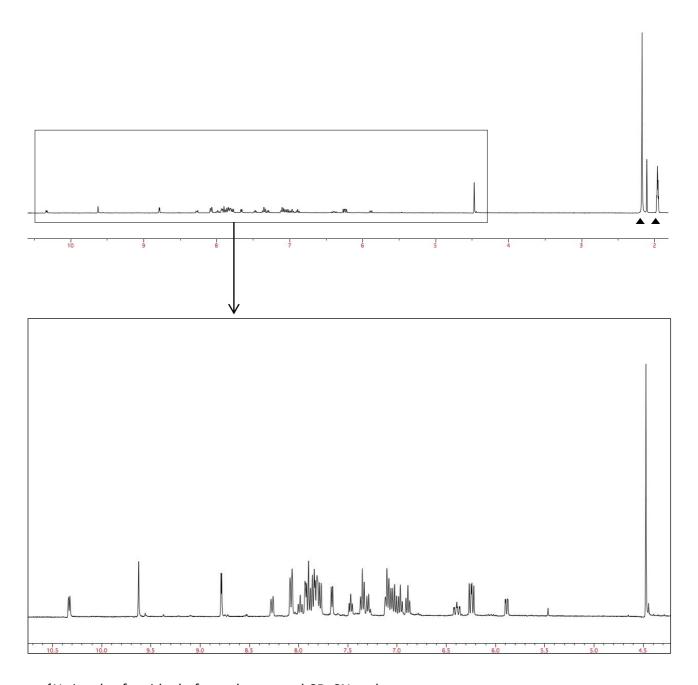

 \triangle = ¹H signals of residual of non deuterated CD₃CN and water.

Figure S13: 1 H-NMR SS3 CD $_{3}$ CN, 400 MHz, r.t.

 \blacktriangle = 1 H signals of residual of non deuterated CD₃CN and water.

Figure S14: 1 H-NMR SS4 CD $_{3}$ CN, 400 MHz, r.t.

 \triangle = ¹H signals of residual of non deuterated CD₃CN and water.

Figure S15: ESI-MS spectrum (negative ions region) of $[Ir(Tph)_2]^-$, $[M]^- = 791 (m/z)$.

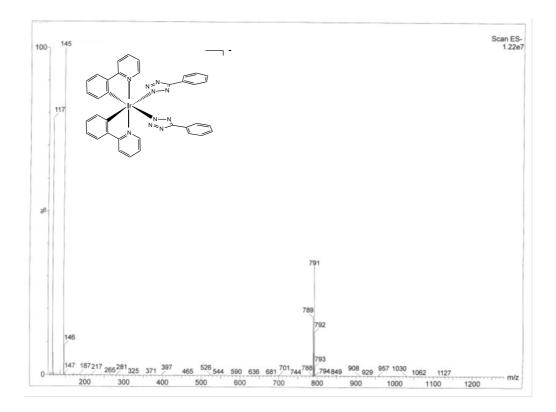


Figure S16: ESI-MS spectrum (negative ions region) of $[F_2Ir(Tph)_2]^-$, $[M]^- = 863 (m/z)$.

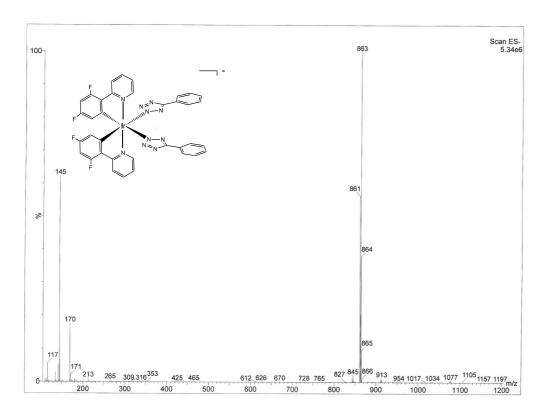


Figure S17: ESI-MS spectrum (negative ions region) of $[Ir(TphCN)_2]^-$, $[M]^- = 841 (m/z)$.

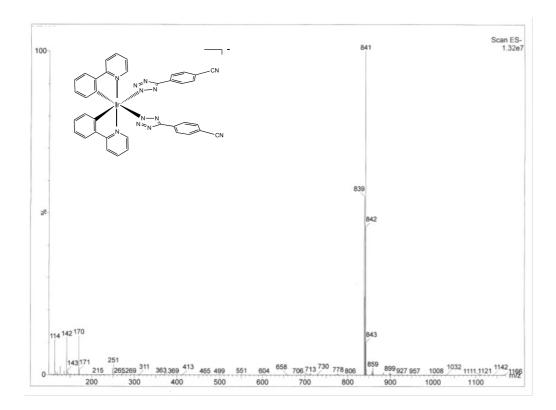


Figure S18: ESI-MS spectrum (negative ions region) of $[F_2Ir(TphCN)_2]^-$, $[M]^- = 913 (m/z)$.

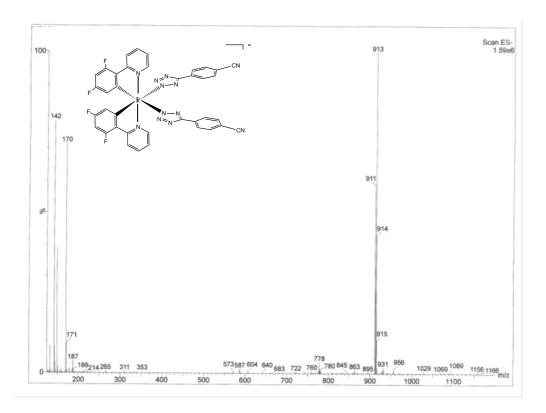
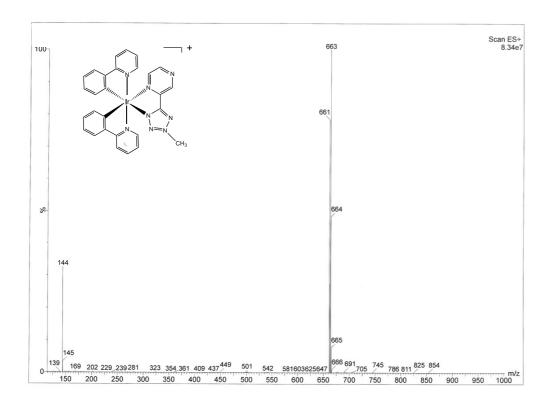



Figure S19: ESI-MS spectrum (positive ions region) of [IrTPYZ-Me]+, [M]+ = 663 (m/z).

Anionic Ir(III) tetrazolate complexes photophysical characterization

Figure S20: Left - Absorption profile $[Ir(Tph)_2]^-$, Right - Excitation profile $[Ir(Tph)_2]^ \lambda_{emi}$ = 492 nm; CH_2Cl_2 , r.t.

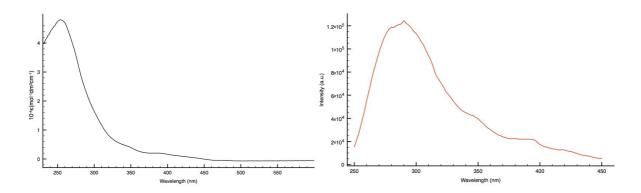
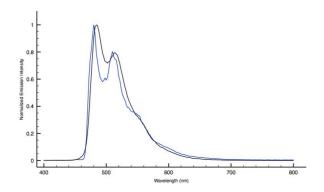



Figure S21: Emission spectra [Ir(Tph)₂]⁻, 298K (black line), 77K (blue line), CH₂Cl₂.

Figure S22: Emission spectra [Ir(Tph)₂]⁻ 298K oxygenated solution (black line), 298K deoxygenated solution (blue line), CH₂Cl₂.

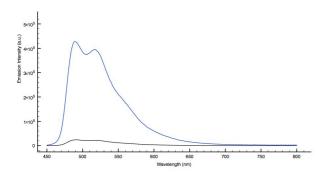
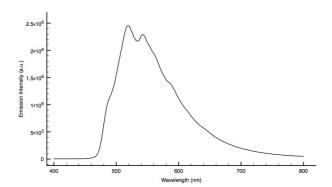



Figure S23: Emission spectra $[Ir(Tph)_2]^-$, neat solid r.t.

Emission Neat Solid r.t.							
λ _{em} τ							
(nm)	(μs)						
520	0.168						
542	0.234						

Figure S24: Left - Absorption profile $[F_2Ir(Tph)_2]^-$, Right - Excitation profile $[F_2Ir(Tph)_2]^ \lambda_{emi} = 462$ nm; CH_2CI_2 , r.t.

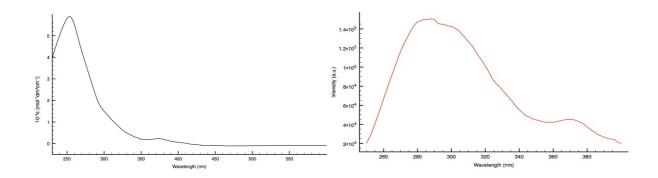
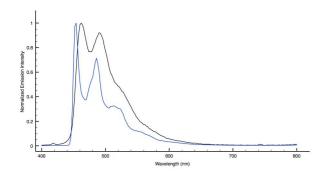



Figure S25: Emission spectra [F₂Ir(Tph)₂]⁻, 298K (black line), 77K (blue line), CH₂Cl₂.

Figure S26: Emission spectra [F₂Ir(Tph)₂]⁻ 298K oxygenated solution (black line), 298K deoxygenated solution (blue line), CH₂Cl₂.

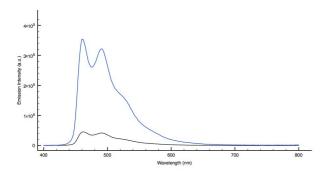
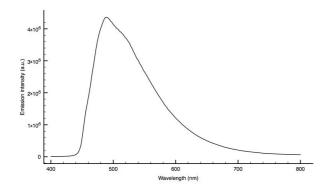



Figure S27: Emission spectra $[F_2Ir(Tph)_2]^-$, neat solid r.t.

Emission Neat solid r.t.							
λ _{em} τ							
(nm)	(µs)						
488	0.295						

Figure S28: Left - Absorption profile [Ir(TphCN)₂]-, Right – Excitation profile [Ir(TphCN)₂]- λ_{emi} = 490 nm; CH₂Cl₂, r.t.

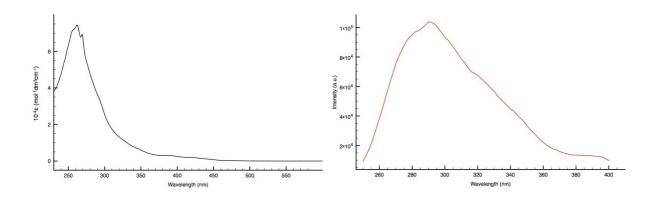
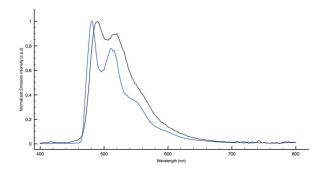



Figure S29: Emission spectra [Ir(TphCN)₂]⁻, 298K (black line), 77K (blue line), CH₂Cl₂.

Figure S30: Emission spectra [Ir(TphCN)₂]⁻ 298K oxygenated solution (black line), 298K deoxygenated solution (blue line), CH₂Cl₂.

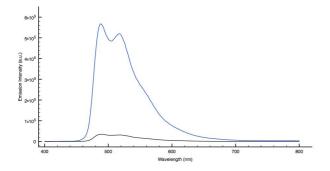
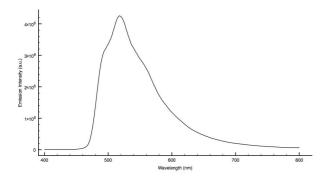



Figure S31: Emission spectra [Ir(TphCN)₂]⁻, neat solid r.t.

Emission Neat Solid r.t.								
λ _{em} τ								
(nm)	(µs)							
518	0.383							

Figure S32: Left - Absorption profile $[F_2Ir(Tph)_2]^-$, Right - Excitation profile $[F_2Ir(Tph)_2]^ \lambda_{emi} = 462$ nm; CH_2CI_2 , r.t.

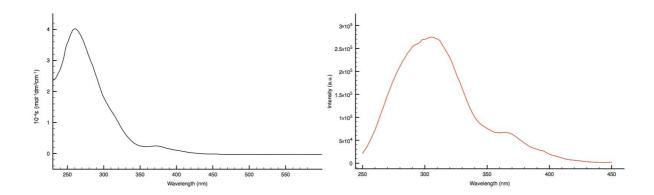
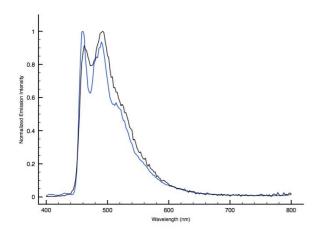



Figure S33: Emission spectra [F₂Ir(TphCN)₂]⁻, 298K (black line), 77K (blue line), CH₂Cl₂

Figure S34: Emission spectra [F₂Ir(TphCN)₂]⁻ 298K oxygenated solution (black line), 298K deoxygenated solution (blue line), CH₂Cl₂.

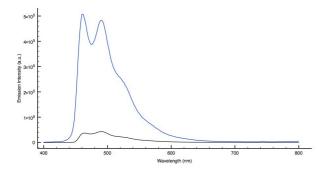
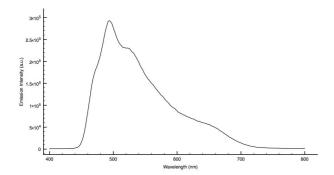
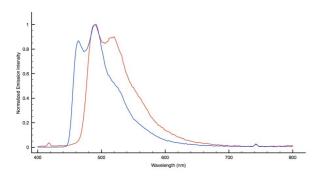




Figure S35: Emission spectra $[F_2Ir(TphCN)_2]^-$, neat solid r.t.



Emission Neat Solid r.t.								
λ _{em} τ								
(nm)	(μs)							
494								
524	0.118							
630								

Figure S36: Normalized Emission Profiles, 298K oxygenated solution of $[F_2Ir(Tph)_2]^-$ (blue line), $[Ir(Tph)_2]^-$ (red line), CH_2CI_2 .

Figure S37: Normalized Emission Profiles, 298K oxygenated solution of [F₂Ir(TphCN)₂]⁻ (blue line), [Ir(TphCN)₂]⁻ (red line), CH₂Cl₂.

Cationic Ir(III) tetrazolate complex photophysical characterization

Figure S38: Left - Absorption profile [IrTPYZ-Me]⁺, Right - Excitation profile [IrTPYZ-Me]⁺, λ_{emi} = 680 nm; CH₂Cl₂, r.t.

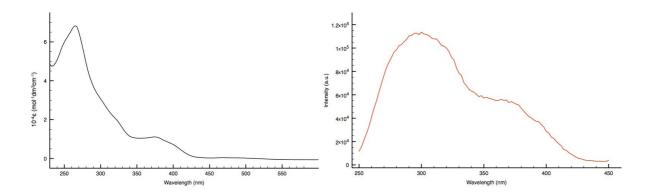
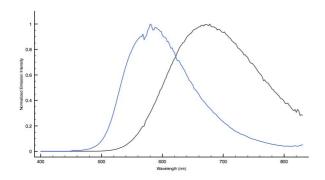



Figure S39: Emission spectra [IrTPYZ-Me]+, 298K (black line), 77K (blue line), CH₂Cl₂.

Figure S40: Emission spectra [IrTPYZ-Me]⁺ 298K oxygenated solution (black line), 298K deoxygenated solution (blue line), CH₂Cl₂.

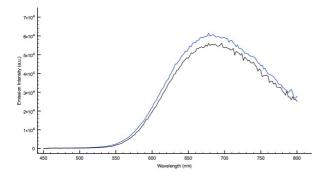
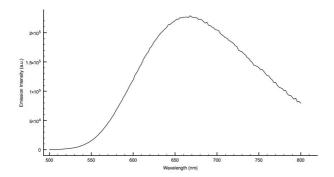
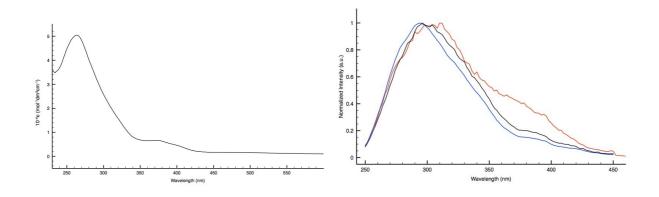
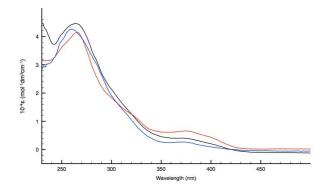



Figure S41: Emission spectra [IrTPYZ-Me]+, neat solid r.t.


Emission Neat Solid r.t.								
$\lambda_{ ext{em}}$	λ _{em} τ							
(nm)	(μs)							
664	0.114 (47)							
	0.264 (53)							

Ir(III) Soft Salts photophysical characterization


Table S2: Photophysical data for SS1

Ab	Emission 298K					Emission 77K		Emission Neat Solid r.t.		C.I.E		
Complex (Solvent: CH ₂ Cl ₂)	λ_{abs} (nm): (10 ⁻⁴ ϵ)(M ⁻¹ cm ⁻¹)	λ _{em} (nm)	τ _{air} (μs)	τ _{Ar} (μs)	φ _{air} (%)	φ _{Ar} (%)	λ _{em} (nm)	τ _{air} (μs)	λ _{em} (nm)	τ (μs)	air	Under Ar
SS1	261(4.93), 314(1.50), 377(0.39)	460 490 680	0.156 0.152 0.099	1.188 1.116 0.105	2.82	7,02	454 484 574	3.750 3.930 4.570	660	0.239	X=0.3288 Y=0.3284	X=0.2033 Y=0.3202

Figure S42: Left - Absorption profile SS1; Right – Normalized Excitation profiles SS1 λ_{emi} = 460 nm (black trace), 490 nm (blue trace) 680 nm (red trace), CH₂Cl₂, r.t.

Figure S43: Absorption profile of **SS1** (black line), [F₂Ir(TphCN)₂]⁻ (blue line), [IrTPYZ-Me]⁺ (red line), CH₂Cl₂.

Figure S44: Emission spectra of **SS1** oxygenated solution (red line), deoxygenated solution (blue line), 298K, CH₂Cl₂.

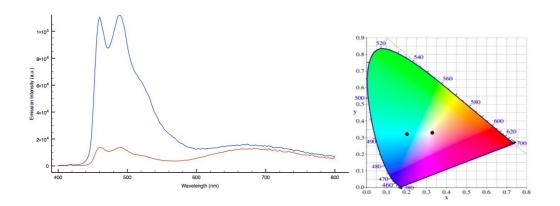


Figure S45: Emission spectra of SS1, 10⁻⁵M (red trace), 10⁻⁶M (blue trace) CH₂Cl₂, r.t.

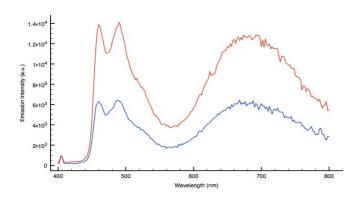
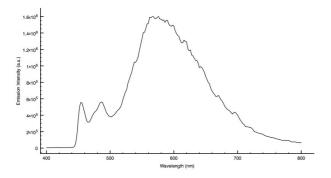



Figure S46: Emission spectra of SS1, 77K, CH₂Cl₂.

Figure S47: Emission spectra of **SS1** (black line), [F₂Ir(TphCN)₂]⁻ (blue line), [IrTPYZ-Me]⁺ (red line), neat solid r.t.

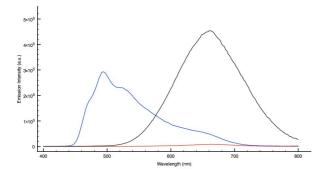


Table S3: Photophysical data for SS2

Absorption Emission 298K					Emission 77K		Emission Neat Solid r.t.		C.I.E			
Complex (CH ₂ Cl ₂)	λ_{abs} (nm): (10 ⁻⁴ ϵ)(M ⁻¹ cm ⁻¹)	λ _{em} (nm)	τ _{air} (μs)	τ _{Ar} (μs)	φ _{air} (%)	φ _{Ar} (%)	λ _{em} (nm)	τ (μs)	λ _{em} (nm)	τ (μs)	air	Under Ar
SS2	263(7.09), 343(1.18), 385(0.69)	486 518 664	0.102 0.100 0.110	0.659 0.654 0.137	3.41	14.83	480 574	1.076 2.452	730	0.100	X=0.4483 Y=0.4461	X=0.2825 Y=0.5171

Figure S48: Left - Absorption profile SS2; Right – Normalized Excitation profiles SS2 λ_{emi} = 486 nm (black trace), 518 nm (blue trace) 664 nm (red trace), CH₂Cl₂, r.t.

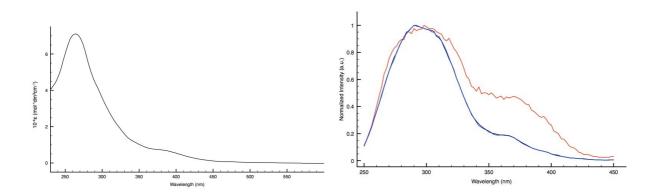
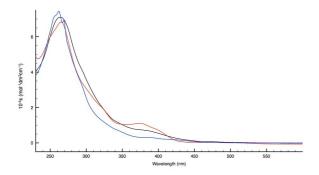



Figure S49: Absorption profile of SS2 (black line), $[Ir(TphCN)_2]^-$ (blue line), $[IrTPYZ-Me]^+$ (red line), CH_2Cl_2 , r.t.

Figure S50: Emission spectra of **SS2** oxygenated solution (red line), deoxygenated solution (blue line), 298K, CH_2Cl_2 , r.t.

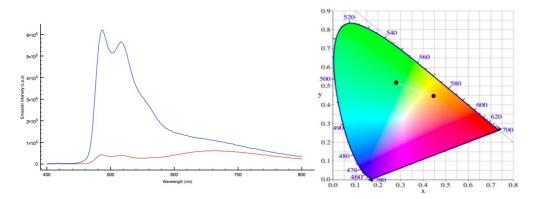


Figure S51: Emission profile of SS2, $10^{-5}M$ (red trace), $10^{-6}M$ (blue trace) CH_2Cl_2 , r.t.

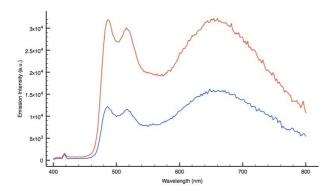


Figure S52: Emission spectra of SS2, 77K, CH₂Cl₂.

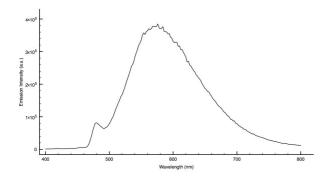
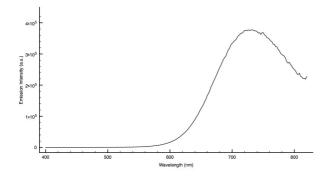



Figure S53: Emission spectra of SS2, neat solid r.t.

Figure S54: Emission spectra of **SS2** (black line), [Ir(TphCN)₂]⁻ (blue line), [IrTPYZ-Me]⁺ (red line), neat solid r.t.

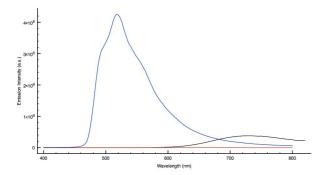


Table S4: Photophysical data for SS3

Absorption		Emission 298K					Emission 77K		Emission Neat Solid r.t.		C.I.E	
Complex	λ _{abs} (nm):	1	_	_			1	_	1	-		
(Solvent:	(10 ⁻⁴ ε)(M ⁻	Λ _{em}	T _{air}	τ_{Ar}	$\varphi_{\rm air}$	φ_{Ar}	Λ _{em}	τ	Λ _{em}	τ	air	Under Ar
CH ₂ Cl ₂)	¹cm ⁻¹)	(nm)	(μs)	(μs)	(%)	(%)	(nm)	(μs)	(nm)	(μs)		
	262(5.19)	486	0.121	1.461			480	3.130			X=0.4634	X=0.273
SS3	320(1.49)	518	0.120	1.441	3.56	12.3	574	3.160	712	0.105	Y=0.4308	Y=0.5102
	381(0.63)	680	0.098	0.105			510	3.270				

Figure S55: Left - Absorption profile SS3; Right – Normalized Excitation profiles SS3 λ_{emi} = 486 nm (black trace), 518 nm (blue trace) 680 nm (red trace), CH₂Cl₂, r.t.

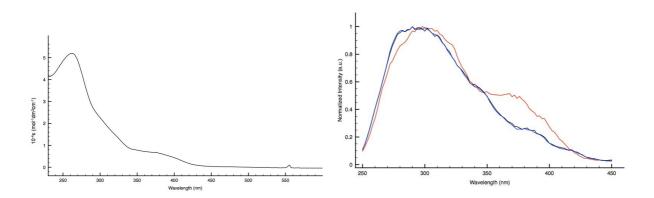
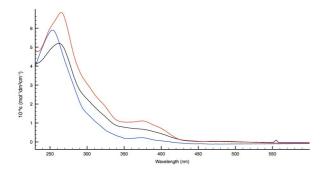



Figure S56: Absorption profile of SS3 (black line), $[Ir(Tph)_2]^-$ (blue line), $[IrTPYZ-Me]^+$ (red line), CH_2Cl_2 , r.t.

Figure S57: Emission spectra of **SS3** oxygenated solution (red line), deoxygenated solution (blue line), 298K, CH₂Cl₂, r.t.

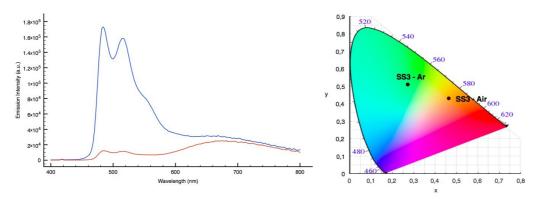
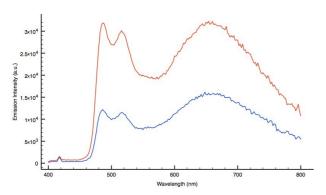



Figure S58: Emission spectra of SS3, 10⁻⁵M (red trace), 10⁻⁶M (blue trace) CH₂Cl₂, r.t.

Figure S59: Emission spectra of **SS3** (black line), [Ir(Tph)₂]⁻ (blue line), [IrTPYZ-Me]⁺ (red line), neat solid r.t.

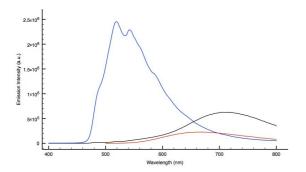


Table S5: Photophysical data for SS4

Absorption		Emission 298K					Emission 77K		Emission Neat Solid r.t.		C.I.E	
Complex	λ _{abs} (nm):	λ	T .		(0)	<i>(</i> 0	,		λ	τ		
(Solvent: CH ₂ Cl ₂)	(10 ⁻⁴ ε)(M ⁻ ¹cm ⁻¹)	(nm)	τ _{air} (μs)	τ _{Ar} (μs)	φ _{air} (%)	φ _{Ar} (%)	(nm)	(μs)	Λ _{em} (nm)	(μs)	air	Under Ar
SS4	255(3.60) 317(0.95) 377(0.43)	462 490 680	0.190 0.198 0.094	1.280 1.220 0.103	3.02	16.9	454 488 578	2.280 2.800 3.066	654	0.304	X=0.308 Y=0.3298	X=0.1972 Y=0.3277

Figure S60: Left - Absorption profile **SS4**; Right – Normalized Excitation profiles **SS4** λ_{emi} = 462 nm (black trace), 490 nm (blue trace) 680 nm (red trace), CH₂Cl₂, r.t.

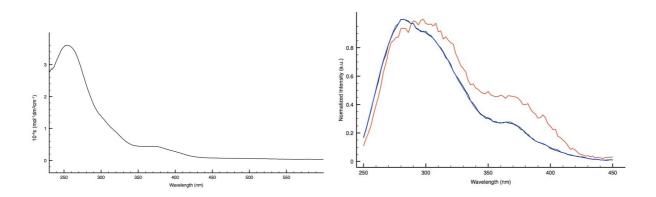
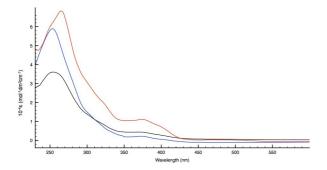



Figure S61: Absorption profile of SS4 (black line), $[F_2Ir(Tph)_2]^-$ (blue line), $[IrTPYZ-Me]^+$ (red line), CH_2Cl_2 , r.t.

Figure S62: Emission spectra of **SS4** oxygenated solution (red line), deoxygenated solution (blue line), 298K, CH₂Cl₂, r.t.

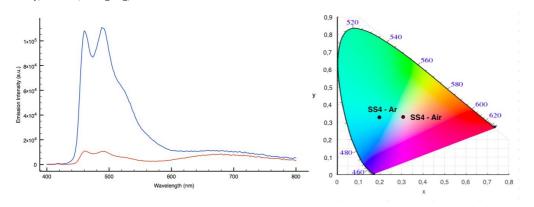
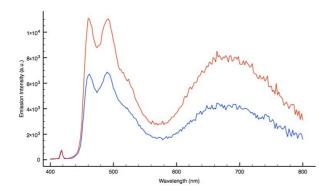
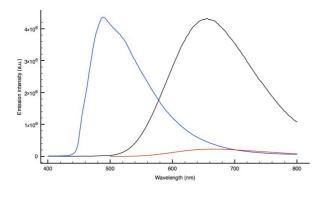
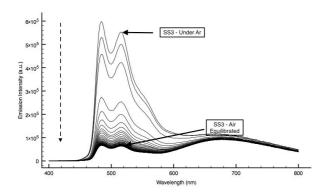




Figure S63: Emission spectra of SS4, 10⁻⁵M (red trace), 10⁻⁶M (blue trace) CH₂Cl₂, r.t.

Figure S64: Emission spectra of **SS4** (black line), [F₂Ir(Tph)₂]⁻ (blue line), [IrTPYZ-Me]⁺ (red line), neat solid r.t.

Table S6: Stern Volmer data summary for **SS3**.

time (min) ^a	10/I ^b	τ0/τ ^c
	_	
0 ^d	1	1
2	1.073	
4	1.225	
6	1.679	
8	1.947	
10	2.148	2.70
12	2.293	
14	2.426	
18	2.466	
20	2.622	4.35
22	2.607	
24	2.716	
26	2.774	
28	2.837	
30	2.880	5.38
32	2.935	
34	2.959	
36	2.978	
38	3.014	
40	3.031	6.06
42	3.054	
44	3.068	
46	3.086	
48	3.057	
50	3.051	6.37
52	3.068	
54	3.054	
56	3.103	
58	3.109	
60	3.121	
62	3.097	
64	3.145	
66	3.157	
68	3.161	
70	3.170	
72	3.183	
78	3.097	
	 	·


 $^{^{\}alpha}$ = Sum of the acquisition time for the emission spectrum (dwell time = 0.250. 1 minute for each spectrum from 400 to 800 nm. λ_{exc} = 370 nm) and waiting time between each scan (1 minute) for 37 total scans.

 $^{^{}b}$ = integral of the emission profile of the degassed sample after the solution was bubbled for 10 minutes under Ar atmosphere using a septa-sealed quartz cell (**IO**) over the integral of the emission profile after (minutes) of air re-equilibration of the sample by the removal of the septum (**I**).

 $[^]c$ = lifetime value of the degassed sample after the solution was bubbled for 10 minutes under Ar atmosphere using a septa-sealed quartz cell ($\tau 0$) over lifetime value after (minutes) of air reequilibration of the sample by the removal of the septum (τ). During the acquisition of each decay time (periods of 2 minutes) the quartz cuvette was sealed in order to prevent uncontrolled air contamination of the sample. Emission lifetimes were determined using pulsed picosecond LED as the excitation source (369 nm) at λ_{max} = 486 nm.

^d = sample under Ar atmosphere, closed vessel.

Figure S65: Multiple Emission Scans of **SS3** from deoxygenated to air equilibrated solution, 37 scans recorded at 2 minutes intervals, CH₂Cl₂, r.t.

Figure S66: Decay times of **SS3** (at λ_{max} = 486 nm) recorded during the Stern Volmer analysis at 10 minutes intervals, CH₂Cl₂, r.t.

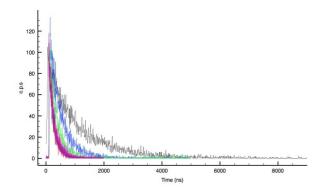
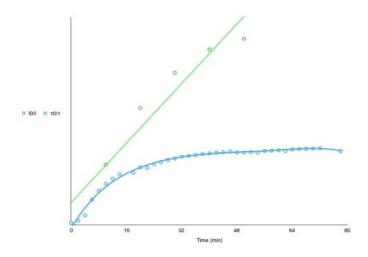
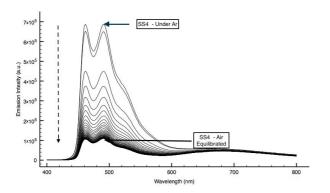



Figure \$67: Stern Volmer Plot of \$\$3.

Table S7: Stern Volmer data summary for **SS4**.

time (min) ^a	10/I ^b	τ0/τ ^c
	,	,
0 ^d	1	1
2	1.06	
4	1.44	
6	1.68	
8	1.91	
10	2.12	2.27
12	2.30	
14	2.48	
18	2.65	
20	2.80	4.45
22	2.92	
24	3.03	
26	3.14	
28	3.24	
30	3.31	4.97
32	3.40	
34	3.45	
36	3.56	
38	3.57	
40	3.61	5.87
42	3.65	
44	3.69	
46	3.72	
48	3.75	
50	3.79	6.11
52	3.80	
54	3.83	
56	3.82	
58	3.86	
60	3.85	
62	3.86	
64	3.84	
66	3.88	
68	3.91	
70	3.87	
72	3.91	
78	3.85	


 $^{^{\}alpha}$ = Sum of the acquisition time for the emission spectrum (dwell time = 0.250. 1 minute for each spectrum from 400 to 800 nm. λ_{exc} = 370 nm) and waiting time between each scan (1 minute) for 37 total scans.

^b = integral of the emission profile of the degassed sample after the solution was bubbled for 10 minutes under Ar atmosphere using a septa-sealed quartz cell (**IO**) over the integral of the emission profile after (minutes) of air re-equilibration of the sample by the removal of the septum (**I**).

 $[^]c$ = lifetime value of the degassed sample after the solution was bubbled for 10 minutes under Ar atmosphere using a septa-sealed quartz cell ($\tau 0$) over lifetime value after (minutes) of air reequilibration of the sample by the removal of the septum (τ). During the acquisition of each decay time (periods of 2 minutes) the quartz cuvette was sealed in order to prevent uncontrolled air contamination of the sample. Emission lifetimes were determined using pulsed picosecond LED as the excitation source (369 nm) at λ_{max} = 460 nm.

^d = sample under Ar atmosphere, closed vessel.

Figure S67: Multiple Emission Scans of **SS4** from deoxygenated to air equilibrated solution, 37 scans recorded at 2 minutes intervals, CH₂Cl₂, r.t.

Figure S68: Decay times of **SS4** (at λ_{max} = 460 nm) recorded during the Stern Volmer analysis at 10 minutes intervals, CH₂Cl₂, r.t.

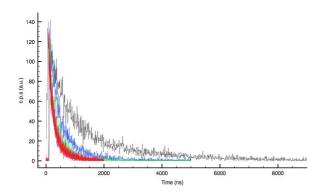
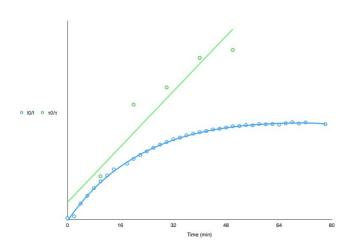
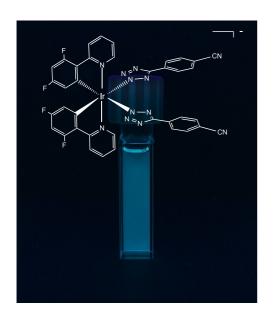




Figure \$69: Stern Volmer Plot of \$\$4.

The Stern-Volmer plot for **SS3** and **SS4** are observed to curve downwards towards the x- axis (**IO/I** vs Time, blue trace), which is characteristic of two populations of fluorophore^{viii} (anion and cation contribution to the ion pair), one of which is less sensitive to the quencher (O_2).

Figure S70: $[F_2Ir(TphCN)_2]^- 10^{-5}M$, air equilibrated (left) $[Ir(TphCN)_2]^- 10^{-5}M$ air equilibrated (right), CH_2CI_2 , r.t; λ_{exc} = 365 nm.

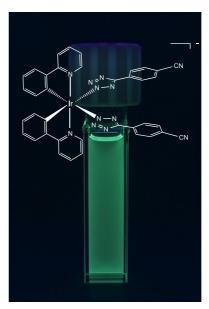
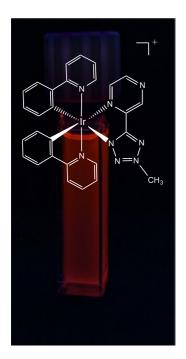



Figure S71: [IrTPYZ-Me]+ 10^{-5} M, air equilibrated solution, CH₂Cl₂, r.t; λ_{exc} = 365 nm.

Figure S72: **SS1**, 10^{-5} M, air equilibrated (left) **SS1**, 10^{-5} M, deoxygenated solution (right), CH₂Cl₂, r.t; λ_{exc} = 365 nm.

Figure S73: **SS2**, 10^{-5} M, air equilibrated (left) **SS2**, 10^{-5} M, deoxygenated solution (right), CH₂Cl₂, r.t; λ_{exc} = 365 nm.

[i]G. A. Crosby and J. N. Demas, J. Phys. Chem. 1971, **75**, 991-1024.

["]D. F. Eaton, Pure Appl. Chem. 1988, **60**, 1107-1114.

[iii]K. Nakamura, Bull. Chem. Soc. Jpn. 1982, **55**, 2697–2705.

[iv]R. N. Butler, Tetrazoles. In "Comprehensive Heterocyclic Chemistry II"; Storr, R. C., Ed.; Pergamon Press: Oxford, U.K., 1996; Vol. 4, 621-678, and references cited therein.

[vi] K. Koguro, T. Oga, S. Mitsui and R. Orita, Synthesis 1998, **910-**914.

[vii] S. Stagni, S. Colella, A. Palazzi, G. Valenti, S. Zacchini, F. Paolucci, M. Marcaccio, R. Q. Albuquerque and L. De Cola, *Inorg. Chem.*, 2008, **47**, 10509-10521.

[viii] D. M. Jameson, Introduction to Fluorescence; CRC Press: Boca Raton, FL, 2014.