Supplementary Information for

Morphology, Porosity and Surface Conductive Layer Optimized MnCo2O4 Microsphere as for Compatible Superior Li+ Ion/Air Rechargeable Battery Electrode Materials

Young Jun Yun,^a Jin Kyu Kim,^a Ji Young Ju,^a Sanjith Unithrattil,^b Sun Sook Lee,^a Yongku Kang,^a Ha-kyun Jung,^a Jin-Seong Park,^{*c} Won Bin Im^{*b} and Sungho Choi^{*a}

Figure S1. Galvanostatic charge/discharge curves of $MnCo_2O_4$ porous microspheres prepared with different organic molecules as the carbon sources; (a) ascorbic acid, (b) glucose and (c) sucrose.

Carbon Source	Molecular Formula/Structure [#]	Number of Oxygenous Group*
Citric acid	C ₆ H ₈ O ₆	4
Ascorbic acid	C ₆ H ₈ O ₇	5
Glucose	C ₆ H ₁₂ O ₆	6
Sucrose	C ₁₂ H ₂₂ O ₁₁	11

Table S1. Molecule characteristic of the carbon sources.

red=oxygen, grey=carbon, white=hydrogen

* -СООН, -ОН, -О-, -СОО-

Figure S2. Long cycle discharge capacity retention of the electrodes composed of the given $MnCo_2O_4$ compound.