THE POTENTIAL OF CAM CROPS AS A GLOBALLY SIGNIFICANT BIOENERGY RESOURCE: moving from fuel or food to fuel and more food -Electronic Supplementary Information

P. Michael Mason^{1,2*}, Katherine Glover², J. Andrew C. Smith³, Kathy J. Willis⁴,

Jeremy Woods⁵, Ian P. Thompson¹

¹ Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK

² Tropical Power Ltd., 58 Church Way, Oxford OX4 4EF, UK

³ Department of Plants Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK

⁴ Royal Botanical Gardens, Kew, Richmond, Surrey TW9 3AB, UK

⁵ Centre for Environmental Policy, Imperial College London, South Kensington, London, SW7 2AZ, UK

*Corresponding author. Tel.: +441865 777771 Email: michael.mason@eng.ox.ac.uk

CONSTANTS		
Lower heating value of CH_4	50.00	MJ kg⁻¹
MW of CH_4	16.00	
Molar volume	22.42	Litres mol ⁻¹
Density of CH ₄ at STP	0.71	kg m ⁻³
Energy content of CH ₄	35.68	MJ m⁻³

ASSUMPTIONS		
Engine efficiency Energy content of cellulosic	41.3%	
biomass ¹	18	GJ dmt ⁻¹
Available land area	2.50E+09	На

Table ESI.1 Constants and assumptions used to calculate values in Table 4. ¹Varies between

16 and 20 largely as a function of ash content; oily or high sugar crops maybe higher.