Electronic supplementary information Positive Onset Potential and Stability of Cu₂O-based Photocathodes in Water Splitting by Atomic Layer Deposition of a Ga₂O₃ Buffer Layer

Changli Li, Takashi Hisatomi, Osamu Watanabe, Mamiko Nakabayashi, Naoya Shibata, Kazunari Domen, Jean-Jacques Delaunay*

Figure S1. a) FE-SEM images of Cu₂O microcrystalline film prepared by annealing Cu(OH)₂ nanowires at 500°C for 2 h. b-f) FE-SEM images of Cu₂O microcrystalline film coated with a 20 nm Ga₂O₃ buffer layer and a 15 nm TiO₂ protective layer by atomic layer deposition with a TiO₂ deposition temperature of 120, 150, 180, 220 and 260°C, respectively. The deposition temperature of Ga₂O₃ thin layer was fixed at 150°C.

Figure S2. XPS spectra of Cu-2p core levels for as-prepared Cu₂O a) and Ga₂O₃ (2 nm)/Cu₂O multilayer sample b). The deposition temperature for Ga₂O₃ is 150°C. b-d) XPS spectra of Ga₂O₃ thin film for Ga-2p core levels and valence band. The inset in a shows the XPS spectra of Cu₂O thin film for valence band.

X-ray photoemission spectrascopy (XPS) was applied to evalate the conduction band discontinuity ΔE_{CB} at Cu₂O/Ga₂O₃ heterojunction interface according to the equation:^[1-2] $\Delta E_{CB} = \left(E_{cu-2p}^{Ga_2O_3-Cu_2O} - E_{Ga-2p}^{Ga_2O_3-Cu_2O}\right) + \left(E_{Ga-2p}^{Ga_2O_3} - E_{VBM}^{Ga_2O_3}\right) - \left(E_{cu-2p}^{Cu_2O} - E_{VBM}^{Ga_2O_3}\right) + \left(E_{ga-2p}^{Ga_2O_3-Cu_2O}\right) + \left(E_{Ga-2p}^{Ga_2O_3-Cu_2O} - E_{Ga-2p}^{Ga_2O_3-Cu_2O}\right)\right)$, which was extracted from the Ga₂O₃(2 nm)/Cu₂O stack sample, is measured to be -185.85 eV. From the Cu₂O and Ga₂O₃ bulk film, the binding energies of Cu-2p_{3/2} and Ga-2p_{3/2} core levels ($(E_{cu-2p}^{Ga_2O_3})$ and $E_{Ga-2p}^{Ga_2O_3}$) with respect to valence band edge positions of Cu₂O and Ga₂O₃ are measured to be 931.95 eV and 1114.63 eV, respectively. The bandgap of the bulk Cu₂O ($E_{g}^{Cu_2O}$) and Ga₂O₃ ($E_{g}^{Ga_2O_3}$) were 2.0 eV^[3] and 4.8-5.18 eV.^[2, 4-6] Thus the ΔE_{CB} is determined to be between - 0.37 and +0.01 eV.

Figure S3. XRD a) and XPS spectra b) of the $TiO_2/Ga_2O_3/Cu_2O$ samples. The deposition temperature for Ga_2O_3 is 150°C and the TiO_2 deposition temperature ranges from 120 to 220°C. For the XRD data, two sets of diffraction peaks are clearly observed as the diffraction peaks are well indexed to the peaks of the cubic structure Cu₂O-I (indicated by a dashed line, space group Pn-3m, lattice constant 4.2600 Å, ICDD PDF card No. 1010941) and the Cu₂O-II (indicated by a solid line, space group Pn-3m, lattice constant 4.2685 Å, ICDD PDF card No. 9007497).

Figure S4. Large-area STEM-EDX element maps of a cross-section of the $TiO_2/Ga_2O_3/Cu_2O$ structure. The deposition temperature for Ga_2O_3 and TiO_2 are 150 and 220°C, respectively.

Figure S5. a) The linear sweep voltammetry scans of a the bare Cu_2O electrode. The scans were conducted in 0.5 M Na₂SO₄ electrolyte (pH = 6) under continuous illumination (Xe lamp) of visible light (cut-off filter > 420 nm, HOYA L42) at a scan rate 20 mV/s. b) Current-time curve of the Cu₂O electrode at 0 V vs. RHE under continuous visible light (> 420 nm) illumination.

Figure S6. The line profiles for Ti, Ga and Cu elements across the TiO_2 and Ga_2O_3/Cu_2O interfaces.

Figure S7. Diffuse reflectance spectra of the Cu_2O and $TiO_2/Ga_2O_3/Cu_2O$ samples for different TiO_2 deposition temperatures of 120, 150, 180, 220 and 260°C.

Figure S8. a) Photographs of the $TiO_2/Ga_2O_3/Cu_2O$ photocathodes prepared with different TiO_2 deposition temperatures, showing a changing color with the increase in temperature. b-c) H_2 bubbles evolving from the Pt/TiO_2(180°C)/Ga_2O_3/Cu_2O and Pt/TiO_2(220°C)/Ga_2O_3/Cu_2O samples under illumination of a Xe lamp at 0 V vs. RHE.

Figure S9. a-b) FE-SEM images of the TiO₂ (180°C)/Ga₂O₃ (150°C)/Cu₂O electrode before Pt coating and stability test. c-d) FE-SEM images of Pt/TiO₂ (180°C)/Ga₂O₃ (150°C)/Cu₂O electrode after 2 h stability test. e) XPS measurement results of the TiO₂ (180°C)/Ga₂O₃ (150°C)/Cu₂O electrode sample and Pt/TiO₂ (180°C)/Ga₂O₃ (150°C)/Cu₂O sample after 2 h stability test.

Figure S10. Wavelength dependence of IPCE for the $Pt/TiO_2/Ga_2O_3/Cu_2O$ electrodes with a TiO_2 deposition temperature of 120 a), 150 b), 180 c), 220 d) and 260°C e) at different applied potentials (vs. RHE).

Figure S11. a) The current-potential curves for the Pt/TiO₂/ZnO/Cu₂O electrodes fabricated with TiO₂ deposition temperatures of 120 and 220°C. The deposition temperature for ZnO was 150°C. b) Current-time curve of the electrodes at 0 V vs. RHE under continuous light illumination. The measurements were conducted in 0.5 M Na₂SO₄-0.1 M KH₂PO₄ solution (pH = 4.26) under illumination of a 500 W Xe lamp at a scan rate 10 mV/s.

Figure S12. XPS spectra of the Cu-2p and Zn-2p core levels for the ZnO (2 nm)/Cu₂O multilayer sample a-b). The deposition temperature for ZnO is 150°C. b-d) XPS spectra of ZnO thin film for Ga-2p core levels and valence band. By using the equation in Figure S2, the conduction band discontinuity ΔE_{CB} at Cu₂O/ZnO heterojunction interface is caculated to be in the range from -1.56 to -1.42 eV, in which a bandgap from 3.12 to 3.26 eV was used for ZnO.^[7-9]

References

1 J. R. Waldrop, R. W. Grant, S. P. Kowalczyk and E. A. Kraut, *J. Vac. Sci. Technol. A* 1985, **3**, 835.

2 Y. S. Lee, D. Chua, R. E. Brandt, S. C. Siah, J. V. Li, J. P. Mailoa, S. W. Lee, R. G. Gordon and T. Buonassisi, *Adv. Mater.* 2014, **26**, 4704.

3 C. Li, Y. Li and J.-J. Delaunay, ACS Appl. Mater Interfaces 2014, 6, 480.

4 D. J. Comstock and J. W. Elam, Chem. Mater. 2012, 24, 4011.

5 T. Oshima, K. Kaminaga, H. Mashiko, A. Mukai, K. Sasaki, T. Masui, A. Kuramata, S. Yamakoshi and A. Ohtomo, *Jpn. J. Appl. Phys.* 2013, **52**, 111102

6 Y. B. Li, T. Tokizono, M. Liao, M. Zhong, Y. Koide, I. Yamada and J.-J. Delaunay, *Adv. Funct. Mater.* 2010, **20**, 3972.

7 Z. Q. Duan, A. Du Pasquier, Y. C. Lu, Y. Xu and E. Garfunkel, *Sol. Energy Mater. Sol. Cells* 2012, **96**, 292.