Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2015

Supporting Information for

Tubular TiC Fibre Nanostructures as Supercapacitor Electrode Material with Stable Cycling Life and Wide-Temperature Performance

Xinhui Xia,^{a,b} Yongqi Zhang,^a Dongliang Chao,^a Qinqin Xiong,^b Zhanxi Fan,^c Jiangping Tu,^b Xili

Tong,^d Hua Zhang,^c and Hong Jin Fan^{a,*}

- ^a School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore,
- ^b State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- ^c School of Materials Science & Engineering, Nanyang Technological University, Singapore 639798, Singapore
- ^dState Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan 030001, P. R. China

Xinhui Xia and Yongqi Zhang contributed equally to this work.

* Address correspondence to fanhj@ntu.edu.sg (H.J. F)

HFC: (TiC) hollow fibre cloth

CFC: carbon fibre cloth

CFC+CNF: carbon fibre cloth branched with carbon nanofibres

HFNT: (TiC) hollow fibre-nanotube

Figure S1 (a-f) SEM images of cotton fibres of commercial cotton T-shirt (Insets: low-magnification SEM image and photo of cotton T-shirt)

Figure S2 Structural and microstructure characterization of TiC hollow fibres: (a) SEM image of TiC hollow fibre cloth; (b) TEM image (c) and HRTEM of part of one hollow fiber. (d) XRD pattern; (e) Raman spectrum (BET measurement-isothermal curve in inset); (f) EDS spectrum.

XRD pattern (Figure S2d) of the as-prepared TiC HFC electrodes shows five strong diffraction peaks at 35.9, 41.7, 60.5, 72.4, and 76.1°, consistent with JCPDS 65-0242. No other impurity peaks are detected. The phase purity of the as-synthesized samples is also verified by Raman spectrum (Figure S2e). The three typical Raman peaks (260, 418, 601 cm⁻¹) are characteristic of TiC.¹⁻³ EDS spectrum of the TiC fibres in Figure S2a further confirms the component of Ti and C (Cu signal is from the TEM copper grid).

Figure S3 Characterization of TiC hollow fibre cloth supported carbon nanofibres (HFC+CNF). (a-f) SEM images. Insets are the corresponding low-magnification SEM images. (g) XRD pattern. Except for the characteristic peaks of TiC, the new broad diffraction peak centered at ~26.4 ° is due to amorphous carbon (JCPDS 75-1621). (h) Raman spectrum. Two broad and low-intensity peaks (1335 and 1573 cm⁻¹) are due to amorphous carbon.

Figure S4 TEM-HRTEM images of carbon nanofibres (SAED pattern in inset). The carbon nanofibres show low-intensity selected area electronic diffraction (SAED) patterns, indicating their low crystallinity or amorphous nature. In the HRTEM image, certain incomplete fringes can be noticed revealing its low level of crystallization.

Figure S5 Characterization of carbon fibre cloth (CFC) electrodes. (a-f) SEM images. (g) XRD pattern. (h) Photograph of the electrodes. (i) BET measurement (isothermal curve). The CFC electrodes have a surface area of \sim 53 m²/g.

Figure S6 Characterization of carbon fibre cloth supported carbon nanofibres (CFC+CNF) electrodes. (a-d) SEM images. (e) XRD pattern. (f) BET measurement (isothermal curve). The CFC+CNF electrodes have a surface area of ~135 m²/g.

Figure S7 CV curves and charge/discharge curves of four supercapacitors based on different electrodes at room temperature (25 °C): (a, b) TiC HFC; (c, d) CFC+CNF; (e, f) CFC.

Figure S8 (a) CV curve of TiC HFNT electrode at a scanning rate of 2.5 mV/s; (b) Raman spectra of TiC electrode before and after charging at 2 A/g.

In order to further confirm whether the TiC behavors as an EDLC material, we further conducted CV test at a low scanning rate of 2.5 mV/s and Raman measurement before and after charging at 2 A/g (Fig. S8). Note that still no redox peaks can be observed in the CV curve of TiC at a low scanning rate, and the CV loop still has a quasi-rectangular shape, which is a characteristic CV behavior of EDLC materials. This is different from that of pseudo-capacitive materials, which always show obvious redox peaks in the CV at low scanning rates (especially lower than 5 mV/s). In addition, the Raman spectra of the TiC electrode before and after charging (Fig. S8b) show that no additional peaks after charging, and all peaks are still from TiC, implying that no new phase is formed after charging. These results verify that the TiC electrodes is indeed EDLC material, similar to other metal carbides such as TaC nanowire electrodes.⁴

Figure S9 (a) CV curves of four supercapacitors at a scanning rate of 300 mV/s. (b) Charge/discharge curves of four supercapacitors at 2 A/g. (c) Charge/discharge curves of four supercapacitors at 0.5 A/g

Figure S10 (a) Areal specific capacitance of four electrodes. (b) Specific capacitances of four

full supercapacitors.

	Gravimetric and areal specific capacitance					
Electrode type	2A/g	5A/g	8A/g	10 A/g	20 A/g	30 A/g
	185 F/g	180 F/g	177 F/g	172 F/g	160 F/g	146 F/g
TiC HFNT	41.6 F/cm ³	40.5	39.8	38.7	36	32.8
		F/cm ³				
	110 F/g	106 F/g	103 F/g	100 F/g	93 F/g	83 F/g
TiC HFC	16.8	16.2	15.7	15.2	14.2	12.6
	F/cm ³	F/cm ³	F/cm ³	F/cm ³	F/cm ³	F/cm ³
	107 F/g	103 F/g	99 F/g	95 F/g	85 F/g	74 F/g
CFC+CNF	15.5 F/cm ³	14.9	14.4	13.8	12.6	11.6
		F/cm ³				
	65 F/g	62 F/g	58 F/g	54 F/g	45 F/g	36 F/g
CFC	6.5	6.2	5.8	5.5	4.5	4.0
	F/cm ³	F/cm ³	F/cm ³	F/cm ³	F/cm ³	F/cm ³

Table S1. Specific capacitance of four electrodes at various current densities at room

temperature (25 °C, based on the mass of single electrode).

Table S2 Electrochemical results of four symmetric supercapacitors at various currentdensities (25 °C, based on the total mass of cathode, anode and separator).

Туре					Full	superc	capacitor	S			
		Speci	fic capa	icitance	(F/g)		Power density (W/kg) vs.				
								Energy	density	(Wh/kg)	
	1	2.5	4	5	10	15	760	3800	5700	9550	11000
	A/g	A/g	A/g	A/g	A/g	A/g	W/kg	W/kg	W/kg	W/kg	W/kg
TiC	44	42.9	42.1	41	38.1	34.8	15.6	14.6	14	12.9	12.4
HFNT											
TiC	26.2	25.2	245	23.8	22.1	19.8	9.3	8.5	8.1	7.4	7.0
HFC											
CFC+	25.5	24.5	23.6	22.6	20.7	19	9	8.4	7.6	7.1	6.7
CNF											
CFC	15.5	14.8	13.8	13.1	10.7	9.5	5.5	4.6	4.2	3.5	3.3

(25 °C, based on the mass of single electrode).					
Electrode	2 A/g after	5 A/g after	10 A/g after	2 A/g after	
Туре	50,000 cycles	100,000 cycles	150,000 cycles	160,000 cycles	
TiC HFNT	183 F/g,	176 F/g,	169 F/g,	182 F/g,	
	99 % retention	98 % retention	97 % retention		
TiC HFC	108 F/g,	103 F/g,	97 F/g,	107 F/g,	
	98 % retention	97 % retention	97 % retention		
CFC+CNF	103 F/g,	94 F/g,	82 F/g,	93 F/g,	
	96 % retention	91 % retention	86 % retention		

56 F/g,

90 % retention

44 F/g,

80 % retention

54 F/g,

62 F/g,

95 % retention

CFC

Table S3 Cycling results of four electrodes at various current densities at room temperature(25 °C, based on the mass of single electrode).

Figure S11 Morphologies of full electrodes after 160,000 cycles: (a, b) TiC HFNT electrodes; (c, d) CFC+CNF electrodes; (e) TiC HFC electrodes and (f) CFC electrodes.

Carbon	Material type	Specific	Capacitance	Mass density
electrodes		capacitance	retention after	(mg cm ⁻²)
		(F / g)	cycles	
Activated	Powder	120-205	81% after	3
Carbon (AC) ⁵			23,000 cycles	
AC ⁶	Powder	135	76% after	8-10
			10,000 cycles	
N-doped AC ⁷	Powder	150	/	4
A.C.8	Dowdon	74	880/ often 500	2.4
AC°	Powder	/4	88% alter 500	3-4
Single well	Dorridon	110 190	cycles	11.25
Single-wall	Powder	110-180	/	11.23
(SWCNT) ⁹				
SWCNT arrays	Integrated	80	/	0.5
10	electrode	00	,	0.0
SWCNT ¹¹	Integrated	36-110	/	0.3
	electrode			
Carbon	Integrated	21	/	/
nanotubes	electrode			
(CNTs) ¹²				
AC/Graphene ¹³	Powder	103-210	94.7 % after	0.3
-			5,000 cycles	
RGO/carbon	Integrated	80-112	100% after	1-2
black ¹⁴	electrode		2,000 cycles	
	Powder	180	85 %	0.91
Nano carbon ¹⁵			After 10,000	
			cycles	
RGO ¹⁶⁻¹⁸	Powder	97-154	/	3.7 -5
RGO paper ¹⁹	Film	181	/	0.5
Activated	Powder	166	97% after	/
graphene ²⁰			10,000 cycles	
Carbon	Powder	76-115	89 % after 4000	/
nano-onions ²¹			cycles	
Graphene	Integrated	110-119	/	/
hydrogel ²²	electrode			
Graphene ²³	Integrated	100-139	61 % after 700	0.6-0.8
	electrode		cycles	
Graphene ²⁴	Integrated	60-70	100% after 1000	0.2
	electrode		cycles	

 Table S4 Electrochemical parameters of different kinds of carbon materials electrodes.

Graphene ²⁵	Integrated	265	98 % after	0.6
	electrode		10,000 cycles	
Graphene ²⁶⁻²⁸	Powder	159-180	98 % after 1000	2.1
			cycles	
Graphene ^{29, 30}	Powder	110-256	99 % after 5000	2
			cycles	
Sponge-like	Powder	50-65	/	2
Graphene ³¹				
Graphene	Integrated	160-212	84 % after 2000	8
paper ³²	electrode		cycles	
Graphene	Integrated	186-366	80 % after 2000	1
aerogel ³³	electrode		cycles	
Carbon	Integrated	130-180	90% after 3000	60
nanofiber ³⁴	electrode		cycles	
Mesoporous	Powder	200-300	98% after 1000	0.125
carbon fiber ³⁵			cycles	
Carbon	Powder	198	95% after 1000	4.1
spheres/graphene			cycles	
composites ³⁶				
Laser-scribed	Integrated	100-300	>97 % after	0.036
Graphene ³⁷	electrode		10,000 cycles	
CNTs/Graphene	Powder	385	100 % after	0.9
composites ³⁸			2,000 cycles	
Graphene/ CNTs	Powder	326.5	/	0.8
composites ³⁹				
3D graphene ⁴⁰	Powder	166-341	96 % after 1,000	0.3-0.4
			cycles	
CNTs/RGO	Powder	244	100 % after	2
composites ⁴¹			1,000 cycles	
Nitrogen-doped	Powder	381	96 % after 5,000	0.11
graphene hollow			cycles	
nanospheres ⁴²				
Carbon	Powder	185	91.7 % after	0.2
nanocage ⁴³			10,000 cycles	
Mesoporous	Powder	280	91.6 % after	1-2
carbon fibres ⁴⁴			1,000 cycles	
Nitrogen-doped	Powder	202	100 % after	5-6
porous carbon			3,000 cycles	
nanofibres ⁴⁵				

Figure S12 CV curves (a scanning rate of 200 mV/s) and charge/discharge curves of four supercapacitors (a current density of 5A/g) at different working temperatures ranging from -15 °C to 65 °C: (a, b) TiC HFC; (c, d) CFC+CNF; (e, f) CFC. (g) Specific capacitances of full supercapacitors at different working temperatures.

Electrode type	–15 °C	5 °C	25 °C	45 °C	65 °C			
	Single electrode							
TiC HFNT	120 F/g	132 F/g	180 F/g	184 F/g	192 F/g			
		F	ull supercapacito	r				
	28.6 F/g	31.4 F/g	42.8 F/g	43.8 F/g	45.7 F/g			
			Single electrode					
TiC HFC	72 F/g	80 F/g	106 F/g	109 F/g	115 F/g			
	Full supercapacitor							
	17.1 F/g	19.0 F/g	25.2 F/g	26 F/g	27.4			
	Single electrode							
CFC+ CNF	53 F/g	69 F/g	99 F/g	104 F/g	108 F/g			
	Full supercapacitor							
	12.5 F/g	16.4 F/g	23.6 F/g	24.7 F/g	25.7 F/g			
	Single electrode							
CFC	33 F/g	44 F/g	62 F/g	67 F/g	72 F/g			
	Full supercapacitor							
	7.9 F/g	10.5 F/g	14.8 F/g	16 F/g	17.1 F/g			

Table S5 Electrochemical results of four electrodes and symmetric supercapacitors at currentdensity of 5 A/g at different working temperatures.

Electrode	5 A/g after 50,000 cycles	5 A/g after 100,000 cycles
type	at –15 °C	at 65 °C
TiC HFNT	115 F/g,	178 F/g,
	95.8% retention	93.5 % retention
TiC HFC	70 F/g,	105 F/g,
	97.2 % retention	91.3 % retention
CFC+CNF	45 F/g,	80 F/g,
	84.9 % retention	74.1 % retention
CFC	25 F/g,	41 F/g,
	75.7 % retention	56.9 % retention

Table S6 Cycling results of four electrodes at 5 A/g at -15 °C and 65 °C (based on the mass
of single electrode).

References

- 1. V. Kiran, K. L. Nagashree and S. Sampath, *RSC Adv.*, 2014, 4, 12057-12064.
- 2. B. H. Lohse, A. Calka and D. Wexler, J. Appl. Phys., 2005, 97.
- 3. L. H. Zhang and R. V. Koka, *Mater. Chem. Phys.*, 1998, 57, 23-32.
- 4. X. Y. Tao, J. Du, Y. P. Li, Y. C. Yang, Z. Fan, Y. P. Gan, H. Huang, W. K. Zhang, L. X. Dong and X. D. Li, *Adv. Energy Mater.*, 2011, 1, 534-539.
- 5. V. Ruiz, C. Blanco, R. Santamar á, J. Ramos-Fern ández, M. Mart nez-Escandell, A. Sep úlveda-Escribano and F. Rodr guez-Reinoso, *Carbon*, 2009, 47, 195-200.
- L. Demarconnay, E. Raymundo-Pinero and F. B éguin, *Electrochem. Commun.*, 2010, 12, 1275-1278.
- 7. D. Hulicova-Jurcakova, M. Seredych, G. Q. Lu and T. J. Bandosz, *Adv. Funct. Mater.*, 2009, 19, 438-447.
- V. Subramanian, C. Luo, A. Stephan, K. Nahm, S. Thomas and B. Wei, *J. Phys. Chem. C*, 2007, 111, 7527-7531.
- K. H. An, W. S. Kim, Y. S. Park, J.-M. Moon, D. J. Bae, S. C. Lim, Y. S. Lee and Y. H. Lee, *Adv. Funct. Mater.*, 2001, 11, 387-392.
- D. N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura and S. Iijima, *Nat. Mater.*, 2006, 5, 987-994.
- 11. M. Kaempgen, C. K. Chan, J. Ma, Y. Cui and G. Gruner, *Nano Lett.*, 2009, 9, 1872-1876.
- 12. C. Du and N. Pan, *Nanotechnology*, 2006, 17, 5314.
- 13. C. Zheng, X. Zhou, H. Cao, G. Wang and Z. Liu, J. Power Sources, 2014, 258, 290-296.

- 14. Y. Wang, J. Chen, J. Cao, Y. Liu, Y. Zhou, J.-H. Ouyang and D. Jia, *J. Power Sources*, 2014, 271, 269-277.
- 15. E. Raymundo-Piñero, F. Leroux and F. B éguin, Adv. Mater. , 2006, 18, 1877-1882.
- 16. M. D. Stoller, S. Park, Y. Zhu, J. An and R. S. Ruoff, *Nano Lett.*, 2008, 8, 3498-3502.
- S. R. C. Vivekchand, C. S. Rout, K. S. Subrahmanyam, A. Govindaraj and C. N. R. Rao, *Journal of Chemical Sciences*, 2008, 120, 9-13.
- 18. C. Liu, Z. Yu, D. Neff, A. Zhamu and B. Z. Jang, *Nano Lett.*, 2010, 10, 4863-4868.
- 19. Z. Bo, W. Zhu, X. Tu, Y. Yang, S. Mao, Y. He, J. Chen, J. Yan and K. Cen, *J. Phys. Chem. C*, 2014, 118, 13493-13502.
- Y. Zhu, S. Murali, M. D. Stoller, K. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz and M. Thommes, *Science*, 2011, 332, 1537-1541.
- 21. Y. Gao, Y. S. Zhou, M. Qian, X. N. He, J. Redepenning, P. Goodman, H. M. Li, L. Jiang and Y. F. Lu, *Carbon*, 2013, 51, 52-58.
- 22. P. Chen, J.-J. Yang, S.-S. Li, Z. Wang, T.-Y. Xiao, Y.-H. Qian and S.-H. Yu, *Nano Energy*, 2013, 2, 249-256.
- 23. Y. Chen, X. Zhang, P. Yu and Y. Ma, J. Power Sources, 2010, 195, 3031-3035.
- 24. W. Chen, Z. Fan, G. Zeng and Z. Lai, J. Power Sources, 2013, 225, 251-256.
- 25. Z. Huang, H. Zhang, Y. Chen, W. Wang, Y. Chen and Y. Zhong, *Electrochim. Acta*, 2013, 108, 421-428.
- 26. Z. Xiong, C. Liao and X. Wang, J. Mater. Chem.A, 2014, 2, 19141-19144.
- 27. P. Wen, P. Gong, Y. Mi, J. Wang and S. Yang, RSC Adv., 2014, 4, 35914-35918.
- 28. J. W. Lee, J. M. Ko and J.-D. Kim, *Electrochim. Acta*, 2012, 85, 459-466.
- 29. H. Wang, Y. Wang, Z. Hu and X. Wang, ACS Appl. Mat. Interfaces, 2012, 4, 6827-6834.
- 30. L. G. Bulusheva, V. A. Tur, E. O. Fedorovskaya, I. P. Asanov, D. Pontiroli, M. Riccò and A. V. Okotrub, *Carbon*, 2014, 78, 137-146.
- Z. Xu, Z. Li, C. M. B. Holt, X. Tan, H. Wang, B. S. Amirkhiz, T. Stephenson and D. Mitlin, *J. Phys. Chem. Lett.*, 2012, 3, 2928-2933.
- 32. D. Sun, X. Yan, J. Lang and Q. Xue, J. Power Sources, 2013, 222, 52-58.
- 33. S. Ye, J. Feng and P. Wu, ACS Appl. Mat. Interfaces, 2013, 5, 7122-7129.
- 34. J. R. McDonough, J. W. Choi, Y. Yang, F. La Mantia, Y. Zhang and Y. Cui, *Appl. Phys. Lett.*, 2009, 95, 243109.
- 35. Y. Liang, X. Feng, L. Zhi, U. Kolb and K. Müllen, *Chem. Commun.*, 2009, 809-811.
- 36. C. Xian áGuo and C. Ming áLi, *Energy Environ. Sci.*, 2011, 4, 4504-4507.
- 37. M. F. El-Kady, V. Strong, S. Dubin and R. B. Kaner, *Science*, 2012, 335, 1326-1330.
- 38. Z. Fan, J. Yan, L. Zhi, Q. Zhang, T. Wei, J. Feng, M. Zhang, W. Qian and F. Wei, *Adv. Mater.*, 2010, 22, 3723-3728.
- S.-Y. Yang, K.-H. Chang, H.-W. Tien, Y.-F. Lee, S.-M. Li, Y.-S. Wang, J.-Y. Wang, C.-C. M. Ma and C.-C. Hu, *J. Mater. Chem.*, 2011, 21, 2374-2380.

- 40. J. Hu, Z. Kang, F. Li and X. Huang, *Carbon*, 2014, 67, 221-229.
- 41. F. Zeng, Y. Kuang, N. Zhang, Z. Huang, Y. Pan, Z. Hou, H. Zhou, C. Yan and O. G. Schmidt, *J. Power Sources*, 2014, 247, 396-401.
- 42. W. Fan, Y.-Y. Xia, W. W. Tjiu, P. K. Pallathadka, C. He and T. Liu, *J. Power Sources*, 2013, 243, 973-981.
- 43. K. Xie, X. T. Qin, X. Z. Wang, Y. N. Wang, H. S. Tao, Q. Wu, L. J. Yang and Z. Hu, *Adv. Mater.*, 2012, 24, 347-352.
- 44. W. Li, F. Zhang, Y. Q. Dou, Z. X. Wu, H. J. Liu, X. F. Qian, D. Gu, Y. Y. Xia, B. Tu and D. Y. Zhao, *Adv. Energy Mater.*, 2011, 1, 382-386.
- 45. L. F. Chen, X. D. Zhang, H. W. Liang, M. G. Kong, Q. F. Guan, P. Chen, Z. Y. Wu and S. H. Yu, *ACS Nano*, 2012, 6, 7092-7102.