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The solar-to-hydrogen (STH) conversion efficiency and operation stability of 47 reports 
of spontaneous, solar-driven water splitting are compiled in Tables 2 – 5 of the main text.  
Additional analysis on the electrolyte conditions employed and the reported STH conversion 
efficiency and device longevity are reported here.

Figure S1 shows a pie chart of these 47 reports binned by the pH of the electrolyte into 
three pH ranges:  acidic, 0-4; near-neutral; 4-10; and basic, 10-14.  There are an approximately 
equal number of acidic and basic demonstrations; about a quarter of the demonstrations used 
near-neutral pH conditions.   

Figure S1.  Pie chart showing the relative proportion of devices operating within a specified pH regime. 

Electronic Supplementary Material (ESI) for Energy & Environmental Science.
This journal is © The Royal Society of Chemistry 2015

mailto:JWAger@lbl.gov


2

Figure S2 provides further analysis of the data shown in Figure S1 by separating each pH 
range by type of system, including the number of junctions:

 2J, SLJ, 2 junction tandem PV with at least one semiconductor–liquid junction 
(SLJ), cf. Table 2;

 2J, isolated PV, 2J tandem PV with all PV junctions “buried” including PV + 
electrolyzer approaches, cf. Table 3

 3J, SLJ, 3 junction tandem PV with at least one semiconductor–liquid junction 
(SLJ), cf. Table 4;

 and 3J, isolated PV, 3J tandem PV with all PV junctions “buried” including PV + 
electrolyzer approaches, cf. Table 5.  

Nearly every device category has a demonstration in one of the previously defined pH ranges.  

Figure S2.  Histogram of the number of reports for each electrolyte pH range, organized by device configuration. 
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Figure S3 graphs the STH conversion efficiency versus pH of the electrolyte, employing 
the same device configurations as in Figure S2.  This illustrates that even the largest reported 
STH conversion efficiencies (i.e. those close to or exceeding 10%) were operated over a wide 
range of pH values, from 0 to 14.  The only device configuration that does not have a reported 
STH efficiency greater than 10% is the 3J, SLJ category.  

Fig. S3.  Reported solar-to-hydrogen (STH) conversion efficiency versus pH.  See bulleted list in text for 
explanation of the legend.  
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Figures S4 and S5 analyze reported longevity.  Figure S4 shows the reported longevity sorted by 
device type.  The devices with isolated PV elements tend to have longer reported lifetimes, but 
there are very few demonstrations exceeding one week in duration.  Figure 5 graphs reported 
longevity versus the pH of the electrolyte.  Again, there are very few reports of long-term device 
operation at any electrolyte pH.  Three studies have reported a lifetime over 100 hr.  Two of 
those used a 3J with isolated PV elements and the other employed 3 PV junctions with one being 
an SLJ.

Figure S4.  Histogram of the number of reports for each lifetime range, organized by device configuration.  The 
studies that did not report a lifetime were not included in the figure above. 
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Figure S5.  Reported lifetime in hours graphed versus pH.  See bulleted list in text for explanation of the legend.  


