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MODELING A SUPERCAPACITOR

Experimental system

In our work we investigated the thermal voltage rise (TVR) in capacitive systems. This thermal voltage rise can be
used for thermocapacitive energy extraction by operating supercapacitors in a charging-heating-discharging-cooling
cycle. The experimental setup as shown in Figs. S1(a)-(e) involves a readily available 10 F supercapacitor; a scanning
electron microscopy (SEM) picture of the porous carbon electrodes of this device is shown in Fig. S1(f). The SEM
pictures were made using a JSM-7500F (JEOL, Japan) scanning electron microscope, where samples were placed on
a conductive carbon tape and measurements were recorded with 5 kV acceleration voltage.

To analyze the porous structure of the supercapacitor used in the measurements, we performed isothermal nitrogen
gas-sorption measurements at −196 °C in the relative pressure range from 5 · 10−7 to 1.0, using 68 steps. The gas-
sorption analysis was carried out using an Autosorb iQ system (Quantachrome, USA). Prior to the measurements,
the electrode material was outgassed at 300 °C for 10 h under vacuum conditions (102 Pa). Results are plotted
in Fig. S2(a) and show a typical type I isotherm corresponding with the predominantly microporous nature of the
activated carbon electrode. This is also corroborated by the pore size distribution in the range of 0.56 nm to 37.5 nm
(Fig. S2(b)), which we derived from the sorption measurement data via quenched-solid density functional theory
(QSDFT) supplied by Quantachrome assuming a slit-shaped pore geometry. The specific surface area was calculated
using the Brunauer-Emmett-Teller (BET) equation in the linear regime of the measured isotherms at a relative partial
pressure range between P/P0 = 5 · 10−3 and 5 · 10−2. Our analysis leads to a pore volume of about 0.56 cm3/g and a
mean overall surface of 1100− 1200 m2/g, resulting in a mean pore size of 〈H〉 ≈ 0.93− 1.02 nm within our parallel-
plate supercapacitor model. To furthermore estimate the mass of the electrode, we use the specific capacitance of
80 − 100 F/g for typical carbon electrodes, which results in a device capacitance of 20 − 25 F/g [1]. Thus, the 10 F
supercapacitor must contain 400− 500 mg carbon. For a carbon density of 0.45 cm3/g, this leads to a carbon volume
VC of 0.18− 0.225 cm3. Moreover, the total electrode area follows with 440− 600 m2.

The model supercapacitor

We model the supercapacitor as two porous carbon electrodes that contain the electrolyte and an additional elec-
trolyte reservoir, as sketched in Fig. S3. The pores in each electrode are modeled as a parallel plate capacitor with
infinitely large plates, separated by a distance H and kept at an electrostatic potential ±Ψ/2, corresponding to each
of the respective electrodes. According to their infinite extension, all extensive quantities must be defined as surface
densities. For comparisons with finite sized systems, we define a surface area Ael for each of the pore walls. In this case
the surface charge density ±eσ relates to the total charge Q of one pore (two plates) via Q = ±2Aeleσ, neglecting edge
effects. In this setup, sketched in Fig. S3, each of the two electrodes has a volume Vel = Vpore + VC = Ael(H +HC),
where we have defined an effective length HC to account for the volume taken by the carbon matrix. Based on
the porosity data discussed in the previous section, we chose H = 1 nm and HC = H · VC

Vpore
= 0.79 nm. For the

aforementioned additional electrolyte reservoir of volume Vres = HresAel we chose Hres = 6H. If the pore size H is
small compared to (the square root of) its surface Ael, edge effects on the capacitor are negligable.
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Figure S1. Experimental setup with (a) the hot reservoir configuration, involving a laboratory heater (IKA), and (b) the cold
reservoir configuration, involving an ice bath. The supercapacitor (e) together with a Pt-100 temperature sensor is welded in
a piece of plastic (d) to avoid any shortcut while putting it into one of the water bathes (c) for temperature regulation. To
investigate the porous carbon structure of the device, a scanning electron microscopy (SEM) picture (f) was made using a
JSM-7500F (JEOL, Japan) scanning electron microscope.
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Figure S2. (a) Nitrogen gas-sorption isotherm at −196 °C for volumes at standard temperature and pressure (STP). (b) The
resulting pore-size distribution is obtained from quenched-solid density functional theory.
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Figure S3. Sketch of the model supercapacitor. It consists of two electrodes, each modeled by a parallel plate capacitor with
two plates at the same electrostatic potential ±Ψ/2. The carbon plates of one electrode carry the electrode charge ±Q which
distributes over the total internal surface 2Ael. In addition to the electrodes, the model contains a reservoir of electrolyte. The
volume of each part can be described by an effective width with respect to the area Ael.

The electrolyte in the supercapacitor is tetraethylammonium tetrafluoroborate (TEA-BF4) solvated in acetonitrile
(ACN) with an assumed concentration of 1 M [2]. The TEA+ and BF −

4 ions are modeled as charged hard spheres
within the so-called Restricted Primitive Model, which we access with classical density functional theory as in previous
work [3]. For simplicity, we choose only one ionic diameter of d = 0.6 nm for both BF −

4 and C8H20N+, ignoring the
asymmetry of the ions in TEA-BF4. This diameter lies in between the effective diameters of the bulk electrolyte and
the pure ionic diameters [2], since we aim to describe the electrolyte in electric fields and confinement.

The available amount of ionic charges is set by the total pore volume 2Vpore and the volume Vres of the additional
reservoir as sketched in Fig. S3. The reservoir has impact on the maximum attainable charge density on the electrodes
surface, because it contains additional ionic charges to participate in the screening of electrode charges. For this reason
the charge-potential curves in Fig. S4 are dependent on the size of the reservoir. At high potentials, when the reservoir
is depleted, the corresponding differential capacitance ∂Q/∂Ψ will vanish because the maximum charge of the capacitor
is reached. At the same time, ionic packing constraints further affect this maximal charge via the choice of pore sizes
[3]: for our model with a pore size of H = 1.0 nm and ionic diameters of 0.6 nm, the maximal packing fraction inside
the pores is 0.565 [4], corresponding to a close-packed configuration of 2.498 particles per nm2 of surface.

In our model, we include the acetonitrile (ACN) solvent as a dielectric background, described by a dielectric constant
ε which is reported for bulk ACN with 35.97 [2]. This dielectric constant is known to monotoneously decrease with
increasing temperature [5]. Furthermore, NMR (nuclear magnetic resonance) spectroscopy [5] shows that this solvent
can be (partially) repelled from the confining geometry of a porous material when an external potential is applied.
Accordingly, the dielectric constant is assumed to diminish in some sense towards the dielectric constant of an ionic
liquid. However, the exact properties of this effect are unknown and while we leave its investigation for future research,
we set the dielectric constant to be ε = 35, neglecting its earlier mentioned temperature dependence.

Parameter dependence of the model

The temperature dependence of the electrostatic potential at fixed charge can be extracted from the charge-potential
curves as depicted in Fig. S4. Interestingly, it turns out that this dependence is almost linear and we show the
mean value of the slope in the inset of Fig. S4. This finding is in good agreement with measurements on the
commercial supercapacitor device, measuring the thermal voltage rise (TVR) of the fully charged device by increasing
the temperature from T = 0 °C at 2.5 V to ∆T . The resulting data is listed in Table S1 and plotted in Fig. S5, together
with a linear fit to the data with a coefficient of determination of 0.997904. Furthermore, the effect of a temperature-
dependent dielectric constant can be seen in Fig. S4 from a comparison with the temperature-independent treatment
used throughout this work. Here, we achieved ε(T ) = 113.28− 0.367014(T/K) + 3.606 · 10−4(T/K)2 from a fit to the
data in [6].

Finally, the obtained charge-potential curves in Fig. S4 are sensitive to parameters as, for example, the pore
size H, the chosen ionic diameter d, the treatment of the solvent in a dielectric constant ε, specific ion-electrode
interactions, and the available amount of ionic charges, included via an additional reservoir. Accordingly, the (model)
supercapacitor is a complex but highly tunable system. Naturally, all these parameters also influence the efficiency of
the device and they are conveniently captured in the figure of merit ξ which we discuss in detail in the next section.
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Figure S4. Temperature dependent charge-potential curves obtained from our model. The shaded (green) area represents the
amount of work that is available from a corresponding cycle. Solid lines are obtained with a fixed dielectric constant ε = 35,
where stroked lines are obtained with a temperature-dependent dielectric constant ε(T ) (see text). The inset shows the averaged
temperature-dependence of the electrostatic potential Ψ for different charge densities σ.

Table S1. Thermal voltage rise (TVR) ∆Ψ measured from increasing the temperature of the fully charged supercapacitor
from T = 0 °C at 2.5 V to ∆T .

T (°C) 0 30 40 50 60 70
∆Ψ (mV) 0.0 19.0 24.6 30.2 37.8 42.5
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Figure S5. Thermal voltage rise (TVR) measured from increasing the temperature of the fully charged supercapacitor from
T = 0 °C at 2.5 V by a temperature difference ∆T . Data points are also listed in Table S1. The linear fit through the origin
shows a coefficient of determination of R2 = 0.997904 and a gradient of 615 µV/K.
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Estimating the extractable energy

The amount of energy which can be extracted from a cycle ABCDA as shown in Fig. S4 can be explored for theory
and experiment using Eq. (1) from the main article. In the following we focus on the temperature dependence of the
integral capacitance C, ignoring the Q-dependence for the moment. The cycle consists of four steps: charging at low
temperature (high capacitance CH) from an uncharged state A to QB = CHΨB, a temperature step towards a high
temperature at fixed charge (QB = QC), a discharging step at low capacitance CL from QC = CLΨC to an uncharged
state D, and a temperature step towards a low temperature. The work performed amounts to

W = −
∮

ΨdQ =

∫ QC

0

Q

CL
dQ−

∫ QB

0

Q

CH
dQ = − Q2

B

2CH

(
1− CH

CL

)
= −Ψ2

B

2
CH

(
1− 1

1 + ∆C
CH

)

= −Ψ2
B

2
∆C +O

(
∆C2

C2
H

)
, (S1)

where we defined ∆C = CL − CH. The latter can be approximated via

∆C = QB

(
1

ΨC
− 1

ΨB

)
=
QB

ΨB

(
−1 +

1

1 + ∆Ψ
ΨB

)
= −CH

∆Ψ

ΨB
+O

(
∆Ψ2

Ψ2
B

)
, (S2)

where we defined ∆Ψ = ΨC −ΨB. Combining both results gives

W =
1

2
CHΨB∆Ψ +O

(
∆Ψ2

Ψ2
B

)
. (S3)

EFFICIENCY OF THE STIRLING-LIKE CYCLE

We now consider the efficiency of our thermocapacitive energy extration device, which is defined in Eq. (2) of the
main article by

η =
W

QH
=

W

QBC + QCD
. (S4)

The nominator of this expression, the work performed during the Stirling-like cycle ABCDA, amounts to

W =

∮
dW = −

∮
ΨdQ =

∫ QC

QD

Ψ(Q,TH)dQ−
∫ QB

QA

Ψ(Q,TL)dQ. (S5)

The denominator in Eq. (S4) requires more elaboration. We find QCD by integrating the Maxwell relation associated
with the free energy F = U − TS and its associated differential dF = ΨdQ− SdT ,

∂2F

∂Q∂T
=

(
∂Ψ

∂T

)
Q

= −
(
∂S

∂Q

)
T

, (S6)

such that

QCD = TH∆SCD = TH

∫ SD

SC

dS = −TH

∫ QD

QC

(
∂Ψ

∂T

)
Q

dQ. (S7)

In order to find the heat flow QBC during fixed-charge heating, we consider a further Legendre transform with
G = U − ST −ΨQ and its associated differential form dG = −SdT −QdΨ, as well as an associated Maxwell relation

− ∂2G

∂Ψ∂T
=

(
∂Q

∂T

)
Ψ

=

(
∂S

∂Ψ

)
T

. (S8)

We calculate the heat transfer during constant charge heating (dQ = 0),

QBC =

∫ C

B

TdS =

∫ C

B

T

[(
∂S

∂T

)
Ψ

dT +

(
∂S

∂Ψ

)
T

dΨ

]
(S9)

≡
∫ TH

TL

CΨ(T )dT +

∫ ΨC

ΨB

T

(
∂Q

∂T

)
Ψ

dΨ, (S10)
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where we define the constant potential heat capacity via CΨ = T
(
∂S
∂T

)
Ψ

= −T
(
∂2G
∂T 2

)
Ψ

, which consists of two parts:

one part Cs
Ψ due to the solvent, and a second part Cions

Ψ attributable to the ions. For all practical purposes the heat

flow during dissipative heating will be dominated by the first term of Eq. (S10), QBC ≈
∫ TH

TL
CΨ(T )dT .

Putting all together, we find for the efficiency

η =
W

QH
=

∫ QC

QD
Ψ(Q,TH)dQ−

∫ QB

QA
Ψ(Q,TL)dQ∫ TH

TL
CΨ(T,QH)dT + TH

∫ QC

QD

(
∂Ψ(Q,TH)

∂T

)
Q
dQ

. (S11)

To perform calculations we furthermore approximate the heat capacity CΨ of the electrolyte by the heat capacity Cs
Ψ

of the solvent. Further approximation can be applied to Eq. (S11) by rewriting

Ψ(Q,T ) =

∫
∂Ψ(Q,T )

∂T
dT ≈ T ∂Ψ(Q,T )

∂T
, (S12)

which turns out to be very accurate because of the near-perfect temperature-independence of ∂Ψ(Q,T )
∂T .

Using this approximation we rewrite the efficiency from Eq. (S11) as

η =
TH

∫ QC

QD

∂Ψ(Q,TH)
∂T dQ− TL

∫ QB

QA

∂Ψ(Q,TL)
∂T dQ∫ TH

TL
CΨ(T,QH)dT + TH

∫ QC

QD

(
∂Ψ(Q,TH)

∂T

)
Q
dQ

≈
∆T∆Q∂Ψ(Q,TH)

∂T

∆TCΨ(T,QH) + TH∆Q∂Ψ(Q,TH)
∂T

=
ηC

1 + ηC
CΨ(T,QH)

∆Q
∂Ψ(Q,TH)

∂T

≡ ηC
1 + ηCξ−1

, (S13)

defining the figure of merit ξ in the last step. The heat capacity can be split into contributions of the electrode and
the reservoir such that

CΨ(T,QH)

∆Q
=

2celVel + cACNVres

2eAel∆σ
. (S14)

Here, we have approximated the specific heat capacity cel of the acetonitrile (ACN) electrolyte by the heat capacity
of the bulk ACN solvent, cACN = 1.75562 · 103 J/(K dm3). Together with a carbon density of 2.22 g/cm3, the heat
capacity 0.709 J/(K g) of carbon amounts to cC = 1.60234 · 103 J/(K dm3). Defining furthermore the porosity of the

electrodes as φ =
Vpore

Vpore+VC
= H

H+HC
, we find Vel = (H +HC)Ael = H

φ Ael. Writing the heat capacity of the electrode

as a porosity-weighed combination of cACN and cC,

cel = φcACN + (1− φ)cC, (S15)

we find

CΨ(T,QH)

∆Q
=

(
cACN + ( 1

φ − 1)cC

)
H + 1

2cACNHres

e∆σ
. (S16)

Note that, to calculate the figure of merit, we use a charge-averaged value for the pseudo-Seebeck coefficient

〈Π(Q,T ∗)〉Q = 1
∆Q

∫ QB

QA
Π(Q,T ∗)dQ at the intermediate temperature T ∗ = TL+TH

2 .

COMPARISON WITH A THERMOELECTRIC DEVICE

Our model engine harvests energy out of a difference in temperature between two baths. Its driving mechanism is
a change in entropy due to a microscopic rearrangement of the electric double layers structure caused by a change
in temperature. Besides currents due to the rearrangement, no currents are present, because temperature is changed
in open circuit mode of the device. This mechanism is to be contrasted to thermoelectric engines which also harvest
electrical energy out of thermal energy, but where a thermal gradient is present in the engine. These devices are
typically made from p- and n-junctions which exploit the Seebeck effect, the generation of a potential difference due
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Figure S6. Efficiency η for a cycle of the newly proposed HTCC with a theoretical figure of merit ξ = 0.066 and an experimental
one ξ = 0.0039. Data has been obtained from the approximated Eq. (S13), where the acuracy of the approximation has been
discussed in the inset of Fig. 1(c) of the main article. The data is shown for a fixed low temperature TL = 0 °C and three
recuperation efficiencies ηrec together with the Carnot efficiency ηC and efficiencies from Eq. (S17) for thermoelectric devices
of different ZT .

to a gradient in temperature which causes different electron mobilities. Their maximal efficiency [7]

η = ηC

√
1 + ZT − 1√

1 + ZT + TL

TH

(S17)

is characterized by the figure of merit ZT = S2T
κR , a fixed material property, where we used the terminology T =

1
2 (TH +TL), S = ∂Ψ/∂T , the thermal conductivity κ, and the resistance R. This efficiency of a thermoelectric engine
is typically derived from the ratio of two powers, i.e. the harvested devided by the dissipated power. As an inherently
non-static quantity, it is quite different from our proposed thermocapacitive heat-to-current converter (HTCC), whose
efficiency is found from a ratio of two energies (work devided by an integrated heat flow), as shown in the previous
section of this Electronic Supplementary Information. To achieve a power available from our proposed engine, the
cycle times must be taken into account, which we have not yet optimized.

To draw a comparison between our proposed thermocapacitive and a thermoelectric device, we have to compare
their efficiencies; a direct comparison on the level of the respective figures of merit is useless, because they are
defined in different ways. We plot the efficiencies from Eqs. (S13) and (S17) together in Fig. S6. For the given
parameters, our figures of merit, ξ = 0.066 (theoretical) and ξ = 0.0039 (first and not optimized experiment),
would correspond to figures of merit of a thermoelectric device of ZT = 1.63 and ZT = 0.075. Obviously, the
newly proposed thermocapacitive HTCC is much more efficient in the low-temperature regime when compared to
thermoelectric devices. When we assume a recuperation of 80%, it compares to thermoelectric devices with ZT > 20.
Without recuperation, it still reaches values of ZT & 2. The efficiency of our measurements is approximately an order
lower than our theory predicts. As already discussed in the main article, our measurement is just a first proof of
principle on a cheap and readily available device which has not been optimized yet.
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