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1. Theory

1.1. Details of the calculations

Experimental low temperature Bi crystal structure and lattice parameters for the A7
rhombohedral primitive cell! were used in the computations: space group no. 166, R-3m, a =
4.533A, ¢ = 11.797A (in hexagonal notation), Bi atoms positions: (0.234, 0.234, 0.234) and
(0.766, 0.766, 0.766). For the supercell full potential linearized augmented plane wave (FP-
LAPW) calculations for In, Ga, and Sn doped Bi, the supercell was constructed starting from the
hexagonal equivalent of the Bi unit cell (containing 6 Bi atoms). This cell was multiplied,
building a 4x4x1 supercell (containing 96 atoms, dimensions: a = 18.13A, ¢ = 11.80A), whose
size is equivalent to 48 primitive A7 cells. Substitution of a single Bi atom with an impurity
atom results in the impurity concentration of 1.04% =~ 1%, and causes lowering of the unit cell
symmetry to P3ml (space group no. 156), reducing the number of symmetry operations from 12
to 6. The Perdew-Burke-Ernzerhof Generalized Gradient Approximation? (PBE-GGA) was used
to calculate exchange-correlation potential. In the first step, atomic positions were relaxed in a
semi-relativistic computation on a 3x3x4 k-point mesh, and it was observed that all of the
impurities (In, Ga, Sn) create a negative chemical pressure, as described in the paper. Final
calculations, which included a spin-orbit coupling term, were done on a 3x3x5 Kk-point mesh.

To independently verify the results of the supercell calculations, and to study the effect of
the impurity concentration on the evolution of density of states (DOS) near the Fermi energy
(Er), the Korringa-Kohn-Rostoker method, with the coherent potential approximation (KKR-
CPA) was used. The advantage of the KKR-CPA is that any impurity concentration may be
calculated using the same computational geometry, i.e. a primitive rhombohedral Bi crystal cell,
however neglecting the local crystal relaxation effects. The KKR-CPA computations were
limited to the spherical potential and semi-relativistic approximations. The DOS calculated with
KKR-CPA shows good agreement with that obtained from the full potential relativistic supercell
calculations. In all KKR calculations, the local density approximation (LDA) was used. The
position of Er in doped samples was obtained using the generalized Lloyd formula,’ and to
increase the unit cell filling, two empty spheres were added between Bi atoms in positions along
the trigonal axis: la (0,0,0) and 1b (0.5,0.5,0.5). Also using the KKR-CPA, we explored the

behavior of possible defects in the Bi:In system, especially the role of interstitial defects.



For all calculations, high convergence limits were used on the self-consistent cycle (104
q for charge, 10* Ry for Er and 10 Ry for the total energy). All results were checked for

convergence against angular momentum cutoff and k-point number.

1.2. Elemental bismuth: theory
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Figure S1. Electronic band structure of rhombohedral Bi from relativistic FP-KKR calculations.
Inset shows the electron and hole bands near the Fermi energy Er.

For undoped Bi, both FP-LAPW with spin-orbit coupling and fully relativistic (i.e., based
on the Dirac equation) full potential KKR* (FP-KKR) methods were used, giving very similar
results. Electronic dispersion curves and DOS of Bi calculated by the relativistic FP-KKR are
presented in Fig. S1. The two low energy-lying bands are occupied mainly by 6s electrons (two
pers each band, since there are two Bi atoms per primitive A7 cell), and the main valence block,
consisting of three 6p-like bands, accommodates three 6p electrons per Bi atom. The conduction
bands are separated from the valence block by the pseudo-gap. Our results are in overall good
agreement with experimental finding> and the previously published work.%” Relativistic effects
in the band structure are visible as, for example, the splitting of the two highest valence bands at

the I'-point, while DOS near Er is not affected much by the spin-orbit coupling. Our calculations
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were not able to avoid the common LDA band-gap problem, which here manifests itself as an
error in the value of the band overlap. Our calculated value of the L-T overlap is about 170 meV
as the bottom of the electron band at the L-point is too low and the top of the hole band at the T-
point is too high in energy. A similar value (163 meV) was obtained in the previous linear
muffin-tin orbital (LMTO) calculations’, while the pseudopotential calculations® reproduced the
experimental 40 meV overlap value; the authors of that work noted this was unexpected.
Considering that the common DFT+LDA error for band gaps can be of the order of 0.5 eV (e.g.
in Si®), and that the absolute error in the band overlap here is smaller (0.13 e¢V), we find these
values satisfactory enough to qualitatively discuss the behavior of impurities in doped systems.

More rigorous quantitative analysis would require going beyond the local density methods.

1.3. Indium-doped bismuth: theory

Figure S2 shows the DOS of the nearest (NN) and next-nearest (NNN) neighbor Bi atoms
to an In impurity atom. The appearance of the sharp DOS peaks around -5 eV proves that Bi
electrons also contribute to the formation of the hyperdeep defect state (HDS). Since the HDS
accommodates one electron from In and 1/6 of electron per each of the 3 NN and 3 NNN Bi
atoms (thus one Bi electron in total) as described in the main paper (II.1), we can state that both
In and Bi equally contribute to the HDS. Figure S3 shows an In impurity atom, 3 NN and 3
NNN Bi atoms, and the plane on which the charge density is projected in Fig. 3 of the main

paper.
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Figure S2. DOS of the (a) nearest and (b) next-nearest neighbor Bi atoms to an In impurity.



Figure S3. Neighborhood of an In atom and the plane on which the charge density is projected in
Fig. 3 of the main paper. Created using XCrySDen [9].

1.4. Discussion of the doping efficiency of In in Bi

We found in III.1.1 of the main text that the doping efficiency of In is lower than that of
substitutional In, which should release two holes in Bi. This indicates that not all In atoms
substitute for Bi atoms, likely due to the presence of interstitial impurities in the Bi lattice that
compensate the p-type doping action of substitutional In. Such behavior was previously
identified for the case of Li-doped Bi,! which showed transport properties of a degenerately
doped n-type semiconductor. A simple electron count would have identified substitutional Li as
an acceptor in Bi. KKR-CPA calculations!'® showed that the strong n-type behavior of the Li-
doped Bi samples can be explained if Li is an interstitial impurity, where it acts as a simple
electron donor, rigidly moving the Er deep into the conduction band. Here, two types of defects,
the presence of interstitial In and interstitial Bi, were considered in the KKR-CPA calculations
on Bi:In. In the first case, we assume that some In atoms substitute for Bi, but the rest end up
being at interstitial positions. In the second case, we assume that all In atoms are at
substitutional positions, but push some of Bi atoms into interstitial sites.

The largest interstitial site, the 1a (0,0,0) site, lies between Bi atoms along the trigonal
axis, and was selected for the calculations (inset in Fig. S4(a)). Fig. S4(a) shows the DOS of Bi
with interstitial In atoms only. Interstitial In acts as an electron donor, moving the Er toward the

conduction band. The combination of interstitial and substitutional In in the Fig. S4(b) shows
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that interstitial In compensates the acceptor behavior of the substitutional In. Here, the
concentrations of the atoms in calculations were selected in order to result in the Bi:In atomic
ratio as seen in the Bijgos Ing g5 substitutional case. This was done to mimic the experimental
condition where only the Bi:In atomic ratio is controlled. Interstitial In gives one electron to the
main valence block, and for small In concentrations ~ 0.1%, Er moves according to this number.
For higher concentrations near the pseudo-gap, interstitial In acts more effectively, and the

position of Er moves approximately as if it had the valence up to three for ~ 1%.
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Figure S4. KKR-CPA density of states (DOS) for Bi and Bi;_,In, with defects: (a) interstitial In in
undoped Bi, (b) interstitial In in Bi;_In,, (c) interstitial Bi in undoped Bi, (d) and interstitial Bi
in Bi; ,In,. The insetin (a) shows an In atom (blue ball) located at the interstitial site between Bi
atoms (gray balls) in the rhombohedral unit cell of Bi. The random-looking concentrations are
from the attempt to keep the atomic ratio close to the Biyggslng g5 case.

A similar behavior is observed in the second case, that of interstitial Bi (Fig. S4(c) and
(d)). Generally, interstitial Bi is a strong electron donor, with the valence number up to three,

and in combination with the substitutional In, this pair behaves as an n-type impurity. Thus, to



make the system p-type, the number of interstitial Bi should be at least two times smaller than

the number of substitutional In.
In either case, the behavior of the Bi:In system with defects is not a simple rigid shift of

Er, which makes it difficult to define a precise valence number of the defects. Even so, a
meaningful conclusion can be drawn from this defect study: either interstitial In or interstitial Bi

may lead to the carrier compensation effects and explain the low efficiency observed for In

doping in Bi.

1.5. Gallium-doped bismuth: theory
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Figure S5. Density of states (DOS) for Biy99Gayg;. (a-c) FP-LAPW supercell results, (d)
KKR-CPA result.

A set of calculations as were performed on In-doped Bi were also applied to Ga-
doped Bi, with the same technical details. Being a smaller atom than In, substitutional Ga
creates a stronger relaxation effect when placed in the Bi matrix: the nearest neighbors move
from 3.06 A to 2.89 A and the next nearest from 3.51 A to 3.38 A. Nevertheless, this
difference does not alter the main features of the DOS of the doped system. Fig. S5(a) and (b)



show the formation of the HDS DOS peak in the supercell study, with no formation of the
resonant deep defect state (DDS) near Er (Fig. S5(c)). As in the case of Bi:In, the HDS peak
is also present in the KKR-CPA results, but broadened and overlapped with the valence band
DOS (Fig. S5(d)). The acceptor behavior of Ga is well seen in Fig. S6, where Er moves
deeper into the valence band upon increasing the concentration of Ga atoms. Therefore, clear
similarity between In and Ga doped Bi is observed, in agreement with the experimental
observations shown later. This suggests that the p-type doping mechanism via creation of an

HDS is not limited to the Bi:In case, and is likely to be applied to other dopants and host

materials.
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Figure S6. Evolution of density of states (DOS) for the Bi:Ga from the KKR-CPA calculations.
The Ga and Bi atomic contributions are given per atom, not multiplied by the concentrations.

1.6. Tin-doped bismuth: KKR-CPA results
The KKR-CPA total and atom-decomposed DOS near Er for 0.1%, 0.5%, 1%, and 2%

substitutional Sn in Bi are presented in Fig. S7, where contributions from Sn s- and p-states are
also plotted. We again observe the confirmation of acceptor behavior of Sn and the absence of

DDS formation (i.e. there are no partial DOS peaks near Er).
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Figure S7. Evolution of density of states (DOS) for the Bi:Sn from the KKR-CPA calculations.
The Sn and Bi atomic contributions are given per atom, not multiplied by the concentrations.
Modifications of DOS near Er are closer to rigid band like, compared to the In and Ga cases.

2. Experiments

2.1. Indium-doped bismuth: experiments

2.1.1. Equations for galvanomagnetic phenomena, single crystals, electrons and holes

Here we report the detailed analysis of the Hall measurement for Bi:In samples shown in
Fig. 6(b) in the main text. In elemental Bi single crystals, electrons of density N dominate the
low-field Hall coefficient!! when the conditions z444,B.> = 1 and +*B.? < | hold simultaneously.
Here, u, and g, are the electron mobilities taken for each electron ellipsoid along the x (binary)
and y (bisectrix) axes, respectively [inset in Fig. 6(a)], and v is the isotropic hole mobility in the
xy-plane. In this regime, we observe a negative slope in p,,(B.) for both Bi:In samples [inset in
Fig. 6(b)]. In contrast, p,,(B.) becomes nearly linear in B, with a positive slope at higher fields
where 2B.” > 1, which indicates that holes of density P now dominate. The slope of each curve
corresponds to Hall coefficient Ry of each sample. In the low-field limit, Ry yields the electron

concentration, while in the high-field limit, Ry reflects the excess hole concentration. In this



case, éimo Ry =-C/ Nq and lim Ry = C /(P — N)q, where q is the electron charge and C is
ﬁ

B—w

the Hall prefactor for the p,,(B.) configuration, given by!!3:

-2
P P
C= 4[ﬂxﬂy —szj(,ux + 4, +2ij \* MERGEFORMAT (S1).

When B, — 0, Eq. (S1) can be reduced to C =4 4,/ (,ux +u, )2. By inserting mobility values

for pure Bi taken from Ref. [12] at 4.2 K, C = 0.1. Here, we assumed that the ratio s , 4, is not
affected by In doping, which is justified, since the ratio between the electron effective masses
near the Fermi energy is not affected either. Additionally, it is observed that variation in C from
4.2 K to 10 K is negligible.'> Therefore, the same C = 0.1 is used for 7= 2 K in Fig. 6(b) of the
main text. When B, — o, p,(B;) becomes linear and thus, Ry saturates, indicating that the
material becomes degenerate. In degenerate semiconductors or semimetals with spherical
constant energy surfaces C = 1 [Ref. 14]. N and (P-N) for each In-doped sample can be

calculated using the obtained Ry and C, and these are the values reported in Table II of the main

paper.

2.1.2. Equations for the thermopower, with two carrier types and two scattering

mechanisms
A model is developed here to compute the total thermopower of a system with both
electrons and holes, each of which is subject to two scattering mechanisms. As in the main text,
the index ¢ refers to the scattering by acoustical phonons, while the index r refers to the
scattering due to the added impurity. When there are both electrons and holes, the total S for
each crystallographic direction can be expressed as
S.o0. + Syoy,
§=—— (52),
O. + oy,
where S, (< 0) and S;, (> 0) are the partial thermopowers of electrons and holes, respectively.
Moreover, in a similar way with the Matthiessen’s rule, one can combine S for different

scattering mechanisms using the Gorter-Nordheim rule:
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‘. Sp /g + S/ ptr
Vg +1/ iy
From Eq. (S2) and (S3), an expression for the total S of the In-doped samples is found for each

(S3).

direction:

[Se¢/ﬂ¢ +Ser/ﬂr] _Sh¢/V¢+Shr/Vr]
q +Pq

o L Wmrlp ) (v v 4

-1 -1
Hyp + Uy Vg tVr
Ng ( ’ J + Pg ’ J
Hg tr VgVr

To evaluate the partial thermopowers, which are isotropic,'’ the variation of the Er with

temperature can be computed from the known effective masses and temperature dependence of N
and P. Heremans et al.'¢ introduced a pseudo-parabolic model for Bi which takes into account
the non-parabolicity of the conduction band at the L-point, as well as the temperature
dependence of electron effective masses. In the model, the relation between the Fermi energy, as

measured from the band edge, Er, and N is given by

N=——(2detm, y(E -— |dE S5).
3h3( ) IO (£) ( OE 5

Here, m, is the band-edge mass tensor of electrons, whose determinant is the cube of the density

of states mass, y (E )= E (1+ E/Eg ) where Eg is the gap in the energy spectrum, and f; is the

Fermi distribution function.

While the model has been successfully applied to explain the behavior of Sn-doped Bi
samples, !7 the authors found that it does not provide an adequate temperature dependence of Er
at high temperature. The difficulty lies in the unknown temperature dependence of the heavy
electron mass along the bisectrix direction. We observe that the pseudo-parabolic model works
even at high temperatures when the temperature dependence of the electron effective mass is
ignored while the non-parabolicity is kept.'® Therefore, in our calculation, the mass determinant
in Eq. (S5) was assumed to be temperature independent. The partial thermopower of electrons, a

scalar, is given by the pseudo-parabolic model'® as
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¢ ks % + A )i (77 )+ (% + A )i (nF )/77G
L= —— —T7F
q (% + /1)F1/2+/1 (77F )+ (% + /1)F3/z+/1 (77F )/77G

where 4 is the scattering parameter, defined as the exponent of the energy dependence of the

(S6),

relaxation time 7 oc E*, F is the Fermi integral:

r

R — Ty (s7),
" l+exp(n—1r)

and n7r and %G denote Er / kgT and Eg | kgT , respectively. As regards the T-point holes, the
dispersion can be effectively described by the parabolic model for which equations are obtained

by setting E; — oo in Eq. (S5) and (S6):

167

3n°

o0} a
P=—(2detm, )" IO E" (— ﬁ] dE (S8).

OE

kg % + /1)F3/2+/1 (7r)

Sh = — — 77F (S9)

q (% + /1)1:1/2+,1 (nF)

With the known temperature dependence of N and P, the temperature dependence of Ep

for electrons and holes can be found from Eq. (S5) and (S8). Those Er’s are in turn substituted
into Eq. (S6) and (S9) to yield the partial thermopowers for electrons and holes, respectively.
For undoped Bi, 4 = -1/2 denoting the acoustical phonon scattering, while 4 = 0 is added for the
In-doped sample to account for the effect from the energy-independent neutral impurity
scattering. The resistivity provides evidence for temperature-independent scattering, which

implies the energy-independent character of the scattering mechanism.

2.2. Gallium-doped bismuth: experiments

One polycrystalline sample of Bi, to which 0.5 at. % Ga was added, was prepared in a
vacuum sealed ampoule. The ampoule was heated to 903 K and then rapidly quenched. This
method usually does not result in a polycrystalline alloy with fine and randomly-oriented grains,
because, upon solidification, the liquidus front progresses radially inward, which leads to a slight

preferential crystallographic orientation of the grains in the final sample. This is difficult to
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characterize quantitatively, so that measurements of strongly anisotropic properties are sample-
dependent and thus unreliable. We confine the results here to comparing the Ga-doped sample to
a similarly-prepared undoped Bi sample, and to an analysis of the zero-field resistivity and the
Hall effect, which reveals the density of the majority and minority carriers no matter what the
crystal orientation is.'® The possibility of Ga segregation was studied by DSC, but, contrary to
the case of Bi:In, no Ga segregation was detected down to 10 ppm level. Therefore, we assume
that most of 0.5 at. % Ga has been dissolved in the Bi matrix.

The zero-field p(7) of the Bi:Ga sample resembles that of Bi:In showing a bump at 45 K,
whereas the undoped polycrystalline Bi sample exhibits a metal-like behavior (Fig. S8(a)). The
overall magnitude of p(7) of Bi:Ga is larger compared to that of Bi:In, indicating enhanced alloy
scattering, possibly because the difference in Pauling electronegativity is larger between Bi and
Ga than between Bi and In. Fig. S8(b) shows that the Hall resistivity py is a linear function of
magnetic field (B) at the high field regime where v>B* >1, which suggests that holes, of
density P, dominate. We use the notation v,z to denote the mobility of holes and electrons,
respectively, averaged over all crystallographic directions. On the other hand, in the low field
limit where the conditions zZ°B*> =1 and v>B? <1 hold simultaneously, we observe a negative
slope in py(B) (inset in Fig. S8(b)), indicating the presence of a small number (N) of high
mobility minority electrons.

The method used by Issi'® to characterize two-band conduction in undoped Bi
polycrystals with P=N is quite different from the method described in the main text (III.1.2) with
Egs. (1-2) for single crystals; we copy it here and extend it to the case where P=N. When two-
band conduction is considered, the four parameters to be fitted are the electron density N and
mobility 2z, and the hole density P and mobility . The electrical conductivity (o= 1/p) at zero
field is the sum of the contribution of electrons and holes:

oc=0,+0,, o,=Nqu, o,=Pqv (S10).
The relative transverse (i.e. with the current flow perpendicular to B) magnetoresistance is fitted
with two parameters a and b to a magnetic field dependence:

p(B)-p(B=0)  aB’
p(B =0) 1+bB*

(S1D),

where parameters a and b are given by:
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a=-—2n (@+vYy

q(a +0,)

b:L (O—eo-h)z (N_P)z

q2 (Ge +O—h)z N2P2

(S12).

Here, the experimental value of parameter b is only reliable in the high field limit, whereas a can
be fitted at intermediate with good accuracy. As was the case for single crystals, the expected
saturation of p(B) at high field is not always observed, which forces us to refrain from using b.
Therefore, a measurement of the magnetic field dependence of the Hall resistivity py(B) is added
(Fig. S8(b)) for the four parameter fit. Again, following Issi!®:

£e7 s T

BZG o, (P N)z
i NP

pl—[ = (813)5

=

which we can separate into a low-field Hall coefficient R, =1lim ., (p %) and a high-field

Hall coefficient R, =limg, , ,, (p %) given by:

q(PvV> -N@*
Ry = ( )0_2
S14).
11 G
Hoo qP—N

The final step is to use experimental values of p, a, Ry, and Ry, to derive values of P, N, gz, and
7. For Ga-doped polycrystalline Bi, we find N 9.4 x 105 cm® and P = 1.3 x 10'"¥ cm™ at 2 K,
with mobility values of 7 = (5+1)x10° cm?V-ls'! from 6 K to 60 K, and ¥ ~1x10%cm?V-ls-!
below 10 K, which decreases to v = 2.5x10*cm?V-s-! at 60 K. The carrier concentrations are
shown in Fig. S8(c) as a function of temperature. Above 60 K, the full model does not result in
unique and accurate values for the properties of the minority electrons, but the excess hole
concentration (P — N) can still be obtained accurately just by using Ry, in Eq. (S14). The data
confirm that Ga, another group III element, also behaves as an acceptor in Bi, and its doping

efficiency (i.e. the number of holes per Ga atom) is estimated to be higher than that of In. The
similarity in the behavior of p(7), and the high mobility of the electrons, which is temperature-
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independent below 60 K, reveals that Ga introduces the energy-independent neutral impurity

scattering in Bi that In does.
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Figure 88. (a) Temperature dependence of the electrical resistivity p of undoped Bi and
Bigg sGay s polycrystalline samples. The symbols are the experimental data: (red diamond)
undoped Bi, (purple square) Biggs Gays. (b) Hall resistivity py(B) versus magnetic field for Bigg s
Gay s sample measured at 2K. The points indicate the experimental data, while the lines are
added to guide the eye. The inset contains magnification of py(B) at low magnetic field, which
shows the transition from the negative slope to the positive slope. (c) Temperature dependence
of the electron (N) and excess hole (P - N) densities for Bigg s Gay s sample. The cross symbols
are the data obtained by solving Eqs. (S10-S14), and the circle symbols indicate the excess hole
density calculated from the slope of py(B) at high magnetic field (i.e. Ry - in Eq. (S14)).
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