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1. Theory

1.1. Details of the calculations

Experimental low temperature Bi crystal structure and lattice parameters for the A7 

rhombohedral primitive cell1 were used in the computations: space group no. 166, R-3m, a = 

4.533Å, c = 11.797Å (in hexagonal notation), Bi atoms positions: (0.234, 0.234, 0.234) and 

(0.766, 0.766, 0.766).  For the supercell full potential linearized augmented plane wave (FP-

LAPW) calculations for In, Ga, and Sn doped Bi, the supercell was constructed starting from the 

hexagonal equivalent of the Bi unit cell (containing 6 Bi atoms). This cell was multiplied, 

building a 4x4x1 supercell (containing 96 atoms, dimensions: a = 18.13Å, c = 11.80Å), whose 

size is equivalent to 48 primitive A7 cells.  Substitution of a single Bi atom with an impurity 

atom results in the impurity concentration of 1.04%  1%, and causes lowering of the unit cell 

symmetry to P3m1 (space group no. 156), reducing the number of symmetry operations from 12 

to 6.  The Perdew-Burke-Ernzerhof Generalized Gradient Approximation2 (PBE-GGA) was used 

to calculate exchange-correlation potential.  In the first step, atomic positions were relaxed in a 

semi-relativistic computation on a 3x3x4 k-point mesh, and it was observed that all of the 

impurities (In, Ga, Sn) create a negative chemical pressure, as described in the paper.  Final 

calculations, which included a spin-orbit coupling term, were done on a 3x3x5 k-point mesh.

To independently verify the results of the supercell calculations, and to study the effect of 

the impurity concentration on the evolution of density of states (DOS) near the Fermi energy 

(EF), the Korringa-Kohn-Rostoker method, with the coherent potential approximation (KKR-

CPA) was used.  The advantage of the KKR-CPA is that any impurity concentration may be 

calculated using the same computational geometry, i.e. a primitive rhombohedral Bi crystal cell, 

however neglecting the local crystal relaxation effects.  The KKR-CPA computations were 

limited to the spherical potential and semi-relativistic approximations. The DOS calculated with 

KKR-CPA shows good agreement with that obtained from the full potential relativistic supercell 

calculations.  In all KKR calculations, the local density approximation (LDA) was used.  The 

position of EF in doped samples was obtained using the generalized Lloyd formula,3 and to 

increase the unit cell filling, two empty spheres were added between Bi atoms in positions along 

the trigonal axis: 1a (0,0,0) and 1b (0.5,0.5,0.5).  Also using the KKR-CPA, we explored the 

behavior of possible defects in the Bi:In system, especially the role of interstitial defects. 
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For all calculations, high convergence limits were used on the self-consistent cycle (10-4 

q for charge, 10-4 Ry for EF and 10-6 Ry for the total energy).  All results were checked for 

convergence against angular momentum cutoff and k-point number.

1.2. Elemental bismuth: theory

Figure S1. Electronic band structure of rhombohedral Bi from relativistic FP-KKR calculations.  
Inset shows the electron and hole bands near the Fermi energy EF.

For undoped Bi, both FP-LAPW with spin-orbit coupling and fully relativistic (i.e., based 

on the Dirac equation) full potential KKR4 (FP-KKR) methods were used, giving very similar 

results.  Electronic dispersion curves and DOS of Bi calculated by the relativistic FP-KKR are 

presented in Fig. S1.  The two low energy-lying bands are occupied mainly by 6s electrons (two 

pers each band, since there are two Bi atoms per primitive A7 cell), and the main valence block, 

consisting of three 6p-like bands, accommodates three 6p electrons per Bi atom.  The conduction 

bands are separated from the valence block by the pseudo-gap.  Our results are in overall good 

agreement with experimental finding5 and the previously published work.6,7 Relativistic effects 

in the band structure are visible as, for example, the splitting of the two highest valence bands at 

the -point, while DOS near EF is not affected much by the spin-orbit coupling.  Our calculations 
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were not able to avoid the common LDA band-gap problem, which here manifests itself as an 

error in the value of the band overlap.  Our calculated value of the L-T overlap is about 170 meV 

as the bottom of the electron band at the L-point is too low and the top of the hole band at the T-

point is too high in energy.  A similar value (163 meV) was obtained in the previous linear 

muffin-tin orbital (LMTO) calculations7, while the pseudopotential calculations6 reproduced the 

experimental 40 meV overlap value; the authors of that work noted this was unexpected.  

Considering that the common DFT+LDA error for band gaps can be of the order of 0.5 eV (e.g. 

in Si8), and that the absolute error in the band overlap here is smaller (0.13 eV), we find these 

values satisfactory enough to qualitatively discuss the behavior of impurities in doped systems.  

More rigorous quantitative analysis would require going beyond the local density methods.

1.3. Indium-doped bismuth: theory

Figure S2 shows the DOS of the nearest (NN) and next-nearest (NNN) neighbor Bi atoms 

to an In impurity atom.  The appearance of the sharp DOS peaks around -5 eV proves that Bi 

electrons also contribute to the formation of the hyperdeep defect state (HDS).  Since the HDS 

accommodates one electron from In and 1/6 of electron per each of the 3 NN and 3 NNN Bi 

atoms (thus one Bi electron in total) as described in the main paper (II.1), we can state that both 

In and Bi equally contribute to the HDS.  Figure S3 shows an In impurity atom, 3 NN and 3 

NNN Bi atoms, and the plane on which the charge density is projected in Fig. 3 of the main 

paper. 

Figure S2. DOS of the (a) nearest and (b) next-nearest neighbor Bi atoms to an In impurity.



5

Figure S3. Neighborhood of an In atom and the plane on which the charge density is projected in 
Fig. 3 of the main paper.  Created using XCrySDen [9].

1.4. Discussion of the doping efficiency of In in Bi

We found in III.1.1 of the main text that the doping efficiency of In is lower than that of 

substitutional In, which should release two holes in Bi. This indicates that not all In atoms 

substitute for Bi atoms, likely due to the presence of interstitial impurities in the Bi lattice that 

compensate the p-type doping action of substitutional In.  Such behavior was previously 

identified for the case of Li-doped Bi,10 which showed transport properties of a degenerately 

doped n-type semiconductor. A simple electron count would have identified substitutional Li as 

an acceptor in Bi.  KKR-CPA calculations10 showed that the strong n-type behavior of the Li-

doped Bi samples can be explained if Li is an interstitial impurity, where it acts as a simple 

electron donor, rigidly moving the EF deep into the conduction band.  Here, two types of defects, 

the presence of interstitial In and interstitial Bi, were considered in the KKR-CPA calculations 

on Bi:In.  In the first case, we assume that some In atoms substitute for Bi, but the rest end up 

being at interstitial positions.  In the second case, we assume that all In atoms are at 

substitutional positions, but push some of Bi atoms into interstitial sites. 

The largest interstitial site, the 1a (0,0,0) site, lies between Bi atoms along the trigonal 

axis, and was selected for the calculations (inset in Fig. S4(a)).  Fig. S4(a) shows the DOS of Bi 

with interstitial In atoms only.  Interstitial In acts as an electron donor, moving the EF toward the 

conduction band.  The combination of interstitial and substitutional In in the Fig. S4(b) shows 
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that interstitial In compensates the acceptor behavior of the substitutional In.  Here, the 

concentrations of the atoms in calculations were selected in order to result in the Bi:In atomic 

ratio as seen in the Bi0.995 In0.005 substitutional case.  This was done to mimic the experimental 

condition where only the Bi:In atomic ratio is controlled.  Interstitial In gives one electron to the 

main valence block, and for small In concentrations ~ 0.1%, EF moves according to this number.  

For higher concentrations near the pseudo-gap, interstitial In acts more effectively, and the 

position of EF moves approximately as if it had the valence up to three for ~ 1%.  

Figure S4. KKR-CPA density of states (DOS) for Bi and Bi1-αInα with defects: (a) interstitial In in 
undoped Bi, (b) interstitial In in Bi1-αInα, (c) interstitial Bi in undoped Bi, (d) and interstitial Bi 

in Bi1-αInα.  The inset in (a) shows an In atom (blue ball) located at the interstitial site between Bi 
atoms (gray balls) in the rhombohedral unit cell of Bi.  The random-looking concentrations are 

from the attempt to keep the atomic ratio close to the Bi0.995In0.005 case.

A similar behavior is observed in the second case, that of interstitial Bi (Fig. S4(c) and 

(d)).  Generally, interstitial Bi is a strong electron donor, with the valence number up to three, 

and in combination with the substitutional In, this pair behaves as an n-type impurity.  Thus, to 
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make the system p-type, the number of interstitial Bi should be at least two times smaller than 

the number of substitutional In.  

In either case, the behavior of the Bi:In system with defects is not a simple rigid shift of 

EF, which makes it difficult to define a precise valence number of the defects.  Even so, a 

meaningful conclusion can be drawn from this defect study: either interstitial In or interstitial Bi 

may lead to the carrier compensation effects and explain the low efficiency observed for In 

doping in Bi. 

1.5. Gallium-doped bismuth: theory

Figure S5. Density of states (DOS) for Bi0.99Ga0.01.  (a-c) FP-LAPW supercell results, (d) 
KKR-CPA result.

A set of calculations as were performed on In-doped Bi were also applied to Ga-

doped Bi, with the same technical details.  Being a smaller atom than In, substitutional Ga 

creates a stronger relaxation effect when placed in the Bi matrix: the nearest neighbors move 

from 3.06 Å to 2.89 Å and the next nearest from 3.51 Å to 3.38 Å.  Nevertheless, this 

difference does not alter the main features of the DOS of the doped system.  Fig. S5(a) and (b) 
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show the formation of the HDS DOS peak in the supercell study, with no formation of the 

resonant deep defect state (DDS) near EF (Fig. S5(c)).  As in the case of Bi:In, the HDS peak 

is also present in the KKR-CPA results, but broadened and overlapped with the valence band 

DOS (Fig. S5(d)).  The acceptor behavior of Ga is well seen in Fig. S6, where EF moves 

deeper into the valence band upon increasing the concentration of Ga atoms.  Therefore, clear 

similarity between In and Ga doped Bi is observed, in agreement with the experimental 

observations shown later.  This suggests that the p-type doping mechanism via creation of an 

HDS is not limited to the Bi:In case, and is likely to be applied to other dopants and host 

materials.

Figure S6. Evolution of density of states (DOS) for the Bi:Ga from the KKR-CPA calculations.  
The Ga and Bi atomic contributions are given per atom, not multiplied by the concentrations.

1.6. Tin-doped bismuth: KKR-CPA results

The KKR-CPA total and atom-decomposed DOS near EF for 0.1%, 0.5%, 1%, and 2% 

substitutional Sn in Bi are presented in Fig. S7, where contributions from Sn s- and p-states are 

also plotted. We again observe the confirmation of acceptor behavior of Sn and the absence of 

DDS formation (i.e. there are no partial DOS peaks near EF). 
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Figure S7. Evolution of density of states (DOS) for the Bi:Sn from the KKR-CPA calculations. 
The Sn and Bi atomic contributions are given per atom, not multiplied by the concentrations.  
Modifications of DOS near EF are closer to rigid band like, compared to the In and Ga cases.

2. Experiments

2.1. Indium-doped bismuth: experiments

2.1.1. Equations for galvanomagnetic phenomena, single crystals, electrons and holes

Here we report the detailed analysis of the Hall measurement for Bi:In samples shown in 

Fig. 6(b) in the main text.  In elemental Bi single crystals, electrons of density N dominate the 

low-field Hall coefficient11 when the conditions xyBz
2  1 and 2Bz

2 < 1 hold simultaneously.  

Here, x and y are the electron mobilities taken for each electron ellipsoid along the x (binary) 

and y (bisectrix) axes, respectively [inset in Fig. 6(a)], and  is the isotropic hole mobility in the 

xy-plane.  In this regime, we observe a negative slope in ρxy(Bz) for both Bi:In samples [inset in 

Fig. 6(b)].  In contrast, ρxy(Bz) becomes nearly linear in Bz with a positive slope at higher fields 

where 2Bz
2 > 1, which indicates that holes of density P now dominate.  The slope of each curve 

corresponds to Hall coefficient RH of each sample.  In the low-field limit, RH yields the electron 

concentration, while in the high-field limit, RH reflects the excess hole concentration.  In this 
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case,  and , where q is the electron charge and C is 
0

H
B
lim R C Nq/


  H
B
lim R C P N q/ ( )


 

the Hall prefactor for the ρxy(Bz) configuration, given by12,13:

\* MERGEFORMAT (S1).
2

24 2x y x y
P PC
N N

     


       
  

When Bz  0, Eq. (S1) can be reduced to .  By inserting mobility values  24 /x y x yC     

for pure Bi taken from Ref. [12] at 4.2 K, C  0.1.  Here, we assumed that the ratio x / y is not 

affected by In doping, which is justified, since the ratio between the electron effective masses 

near the Fermi energy is not affected either.  Additionally, it is observed that variation in C from 

4.2 K to 10 K is negligible.12  Therefore, the same C  0.1 is used for T = 2 K in Fig. 6(b) of the 

main text.  When Bz  ∞, ρxy(Bz) becomes linear and thus, RH saturates, indicating that the 

material becomes degenerate.  In degenerate semiconductors or semimetals with spherical 

constant energy surfaces C = 1 [Ref. 14].  N and (P-N) for each In-doped sample can be 

calculated using the obtained RH and C, and these are the values reported in Table II of the main 

paper.

2.1.2. Equations for the thermopower, with two carrier types and two scattering 

mechanisms

A model is developed here to compute the total thermopower of a system with both 

electrons and holes, each of which is subject to two scattering mechanisms.  As in the main text, 

the index ϕ refers to the scattering by acoustical phonons, while the index r refers to the 

scattering due to the added impurity.  When there are both electrons and holes, the total S for 

each crystallographic direction can be expressed as 

(S2),
e e h h

e h

S S
S

 

 






where Se (< 0) and Sh (> 0) are the partial thermopowers of electrons and holes, respectively.  

Moreover, in a similar way with the Matthiessen’s rule, one can combine S for different 

scattering mechanisms using the Gorter-Nordheim rule: 
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From Eq. (S2) and (S3), an expression for the total S of the In-doped samples is found for each 

direction:

(S4).
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To evaluate the partial thermopowers, which are isotropic,15 the variation of the EF with 

temperature can be computed from the known effective masses and temperature dependence of N 

and P.  Heremans et al.16 introduced a pseudo-parabolic model for Bi which takes into account 

the non-parabolicity of the conduction band at the L-point, as well as the temperature 

dependence of electron effective masses.  In the model, the relation between the Fermi energy, as 

measured from the band edge, EF, and N is given by

(S5).   
01 2 3 2

3 0

16
2 d

3

f
N E E

h E
/ /det




  
    

em

Here, me is the band-edge mass tensor of electrons, whose determinant is the cube of the density 

of states mass,  where EG is the gap in the energy spectrum, and f0 is the    1 GE E E E  

Fermi distribution function.

While the model has been successfully applied to explain the behavior of Sn-doped Bi 

samples, 17 the authors found that it does not provide an adequate temperature dependence of EF 

at high temperature.  The difficulty lies in the unknown temperature dependence of the heavy 

electron mass along the bisectrix direction.  We observe that the pseudo-parabolic model works 

even at high temperatures when the temperature dependence of the electron effective mass is 

ignored while the non-parabolicity is kept.16  Therefore, in our calculation, the mass determinant 

in Eq. (S5) was assumed to be temperature independent.  The partial thermopower of electrons, a 

scalar, is given by the pseudo-parabolic model16 as
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(S6),
       

       
3 2 5 2
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5 7
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3 5
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where λ is the scattering parameter, defined as the exponent of the energy dependence of the 

relaxation time , F is the Fermi integral: E

(S7),
 0

d
1 exp

r

r
F

F



 




 

and ηF and ηG denote and , respectively.  As regards the T-point holes, the F BE k T/ G BE k T/

dispersion can be effectively described by the parabolic model for which equations are obtained 

by setting  in Eq. (S5) and (S6):GE  

(S8). 
01 2 3 2

3 0

16
2 d

3

f
P E E

h E
/ /det

   
    

hm
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With the known temperature dependence of N and P, the temperature dependence of EF 

for electrons and holes can be found from Eq. (S5) and (S8).  Those EF’s are in turn substituted 

into Eq. (S6) and (S9) to yield the partial thermopowers for electrons and holes, respectively.  

For undoped Bi, λ = -1/2 denoting the acoustical phonon scattering, while λ = 0 is added for the 

In-doped sample to account for the effect from the energy-independent neutral impurity 

scattering. The resistivity provides evidence for temperature-independent scattering, which 

implies the energy-independent character of the scattering mechanism.  

2.2. Gallium-doped bismuth: experiments

One polycrystalline sample of Bi, to which 0.5 at. % Ga was added, was prepared in a 

vacuum sealed ampoule.  The ampoule was heated to 903 K and then rapidly quenched.  This 

method usually does not result in a polycrystalline alloy with fine and randomly-oriented grains, 

because, upon solidification, the liquidus front progresses radially inward, which leads to a slight 

preferential crystallographic orientation of the grains in the final sample.  This is difficult to 
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characterize quantitatively, so that measurements of strongly anisotropic properties are sample-

dependent and thus unreliable.  We confine the results here to comparing the Ga-doped sample to 

a similarly-prepared undoped Bi sample, and to an analysis of the zero-field resistivity and the 

Hall effect, which reveals the density of the majority and minority carriers no matter what the 

crystal orientation is.18  The possibility of Ga segregation was studied by DSC, but, contrary to 

the case of Bi:In, no Ga segregation was detected down to 10 ppm level.  Therefore, we assume 

that most of 0.5 at. % Ga has been dissolved in the Bi matrix.  

The zero-field ρ(T) of the Bi:Ga sample resembles that of Bi:In showing a bump at 45 K, 

whereas the undoped polycrystalline Bi sample exhibits a metal-like behavior (Fig. S8(a)).  The 

overall magnitude of ρ(T) of Bi:Ga is larger compared to that of Bi:In, indicating enhanced alloy 

scattering, possibly because the difference in Pauling electronegativity is larger between Bi and 

Ga than between Bi and In.  Fig. S8(b) shows that the Hall resistivity ρH is a linear function of 

magnetic field (B) at the high field regime where , which suggests that holes, of 122 B

density P, dominate.  We use the notation  to denote the mobility of holes and electrons,  ,

respectively, averaged over all crystallographic directions.  On the other hand, in the low field 

limit where the conditions   and  hold simultaneously, we observe a negative 122 B 122 B

slope in ρH(B) (inset in Fig. S8(b)), indicating the presence of a small number (N) of high 

mobility minority electrons. 

The method used by Issi18 to characterize two-band conduction in undoped Bi 

polycrystals with P=N is quite different from the method described in the main text (III.1.2) with 

Eqs. (1-2) for single crystals; we copy it here and extend it to the case where P N.  When two-

band conduction is considered, the four parameters to be fitted are the electron density N and 

mobility , and the hole density P and mobility .  The electrical conductivity ( = 1/ρ) at zero  

field is the sum of the contribution of electrons and holes:

(S10).     ,    , ee  PqNqhe 

The relative transverse (i.e. with the current flow perpendicular to B) magnetoresistance is fitted 

with two parameters a and b to a magnetic field dependence:

(S11),2

2

1)0(
)0()(

bB
aB

B
BB










where parameters a and b are given by:
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Here, the experimental value of parameter b is only reliable in the high field limit, whereas a can 

be fitted at intermediate with good accuracy.  As was the case for single crystals, the expected 

saturation of ρ(B) at high field is not always observed, which forces us to refrain from using b.  

Therefore, a measurement of the magnetic field dependence of the Hall resistivity ρH(B) is added 

(Fig. S8(b)) for the four parameter fit.  Again, following Issi18:

(S13),
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which we can separate into a low-field Hall coefficient  and a high-field )(lim 0,0 BR H
BBH


 

Hall coefficient  given by:)(lim , BR H
BBH


  

(S14).
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The final step is to use experimental values of ρ, a, RH0, and RH to derive values of P, N, , and 

.  For Ga-doped polycrystalline Bi, we find N   9.4 x 1015 cm-3 and P   1.3 x 1018 cm-3 at 2 K, 

with mobility values of cm2V-1s-1 from 6 K to 60 K, and cm2V-1s-1   51015  5101

below 10 K, which decreases to cm2V-1s-1 at 60 K.  The carrier concentrations are 42.5 10  

shown in Fig. S8(c) as a function of temperature.  Above 60 K, the full model does not result in 

unique and accurate values for the properties of the minority electrons, but the excess hole 

concentration (P – N) can still be obtained accurately just by using RH in Eq. (S14).  The data 

confirm that Ga, another group III element, also behaves as an acceptor in Bi, and its doping 

efficiency (i.e. the number of holes per Ga atom) is estimated to be higher than that of In.  The 

similarity in the behavior of ρ(T), and the high mobility of the electrons, which is temperature-
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independent below 60 K, reveals that Ga introduces the energy-independent neutral impurity 

scattering in Bi that In does.
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Figure S8. (a) Temperature dependence of the electrical resistivity  of undoped Bi and 
Bi99.5Ga0.5 polycrystalline samples.  The symbols are the experimental data: (red diamond) 

undoped Bi, (purple square) Bi99.5 Ga0.5.  (b) Hall resistivity ρH(B) versus magnetic field for Bi99.5 

Ga0.5 sample measured at 2K.  The points indicate the experimental data, while the lines are 
added to guide the eye.  The inset contains magnification of ρH(B) at low magnetic field, which 
shows the transition from the negative slope to the positive slope.  (c) Temperature dependence 
of the electron (N) and excess hole (P - N) densities for Bi99.5 Ga0.5 sample.  The cross symbols 

are the data obtained by solving Eqs. (S10-S14), and the circle symbols indicate the excess hole 
density calculated from the slope of ρH(B) at high magnetic field (i.e. RH in Eq. (S14)).
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