## Supporting Information

## Amorphous S-rich $S_{1-x}Se_x/C$ (x $\leq 0.1$ ) Composites Promise Better Lithium Sulfur Batteries in Carbonate-based Electrolyte

Xiaona Li, Jianwen Liang, Kailong Zhang, Zhiguo Hou, Wanqun Zhang, Yongchun Zhu,\* and Yitai Qian\*



**Figure S1.** (a) TEM image, (b) nitrogen sorption isotherms, and (c) pore size distributions of the as-prepared porous carbon.



**Figure S2.** (a,b) TEM images of the mixture of Se, S and porous carbon after the ball-milled process.



Figure S3. Thermogravimetric analysis of the as-prepared  $S_{1-x}Se_x/C$  composites. All the tests were conducted with a temperature ramp of 10 °C min<sup>-1</sup> in N<sub>2</sub>.

**Table S1.** The Se, S and C content in the  $S_{1-x}Se_x/C$  samples (x=0.05, 0.06, 0.08, 0.1) based on thermogravimetricanalysis and elemental analysis.

| Statement                               | Se (wt%) | S (wt%) | C (wt%) | x in $S_{1-x}Se_x/C$ |
|-----------------------------------------|----------|---------|---------|----------------------|
| $S_{0.9}Se_{0.1}/C$                     | 10.9     | 38.9    | 50.2    | 0.102                |
| $S_{0.92}Se_{0.08}/C$                   | 8.65     | 41.05   | 50.3    | 0.079                |
| S <sub>0.94</sub> Se <sub>0.06</sub> /C | 7.4      | 42.9    | 49.7    | 0.065                |
| $S_{0.95}Se_{0.05}/C$                   | 6.4      | 45.3    | 48.3    | 0.054                |



**Figure S4.** EDS spectrum of the  $S_{0.94}Se_{0.06}/C$  sample.



**Figure S5.** (a) Raman spectra of  $S_{1-x}Se_x/C$  samples recorded at room temperature, (b) Raman spectra of  $S_{1-x}Se_x/C$  samples (x=0.05, 0.08, 0.1) recorded at -110 °C. (c) Raman spectra of  $S_{1-x}Se_x/C$  samples in CS<sub>2</sub> solution, (d) Raman spectrum of CS<sub>2</sub> solution.



Figure S6. The phase diagram of sulphur-selenium binary system.



**Figure S7.** XPS spectra of S 2p and Se 3p in the  $S_{0.94}Se_{0.06}$  sample without carbon after heat treatment.



Figure S8. XRD patterns of  $S_{0.9}Se_{0.1}$ ,  $S_{0.92}Se_{0.08}$  and  $S_{0.95}Se_{0.05}$  samples without carbon after heat treatment.



Figure S9. Raman spectra of  $S_{1-x}Se_x$  (x = 0.05, 0.06, 0.08, 0.1) samples recorded at room temperature.



**Figure R10.** Typical galvanastatic discharge-charge curves of the cell with  $S_{0.94}Se_{0.06}$  in the potential region of 0.8–3 V versus Li/Li<sup>+</sup> at 0.02 A g<sup>-1</sup>.



**Figure S11.** Discharge/charge profiles of  $S_{0.94}Se_{0.06}/C$  samples obtained at 110 and 200 °C, respectively, with current density of 0.2 A g<sup>-1</sup>.



Figure S12. Cycling performance of  $S_{1-x}Se_x/C$  samples (x=0.05, 0.08, 0.1) at 1 A g<sup>-1</sup>.



Figure S13. Cycling performance of S/C composites at 0.2 A g<sup>-1</sup>.



Figure S14. Raman spectra of  $S_{1-x}Se_x/C$  electrodes at charge state recorded in  $CS_2$  solution.



**Figure R15.** (a) Cycling performance of  $S_{0.94}Se_{0.06}/C$  electrode with higher loading about 2-3 mg cm<sup>-2</sup> at current density of 0.5, 1 and 2 A g<sup>-1</sup>. (b) Cycle performance of  $S_{0.94}Se_{0.06}/C$  electrode with higher loading about 2-3 mg cm<sup>-2</sup> at various current rates: 0.1, 0.2, 0.5, 1, 2, 5, 10, and 20 A g<sup>-1</sup> and then back to 0.5 A g<sup>-1</sup>. (c) Cycling performance of  $S_{0.94}Se_{0.06}/C$ -20 and  $S_{0.94}Se_{0.06}/C$ -40 electrodes at current density of 0.5 A g<sup>-1</sup>. (d) Cycle performance of  $S_{0.94}Se_{0.06}/C$ -20 and  $S_{0.94}Se_{0.06}/C$ -20 and  $S_{0.94}Se_{0.06}/C$ -20 and  $S_{0.94}Se_{0.06}/C$ -40 electrodes at various current rates: 0.1, 0.2, 0.5, 1, 2, 5, 10, and 20 A g<sup>-1</sup> and then back to 0.5 A g<sup>-1</sup>.



**Figure S16.** (a) The electrochemical impedance spectra of the different  $S_{1-x}Se_x/C$  samples (x=0.05, 0.06, 0.08, 0.1) and S/C composite cathodes (the scattered data points and continuous lines represent experimental data and corresponding fitting results, respectively). (b) The corresponding equivalent circuits. The impedance of different  $S_{1-x}Se_x/C$  (x=0.05, 0.06, 0.08, 0.1) electrodes are measured by alternating current (AC) impedance spectroscopy in their full charge state after 1 cycle (Figure S13a). All of the impedance diagrams consist of a large-radius semicircle in the high-frequency region and inclined line in the low-frequency region. Although complex impedance plot looks to give single semicircle, it has two relaxation processes in the high-frequency region. The complex modulus plots (Figure S13c) make these clear, giving two distinct semicircles in high-frequency region. Due to the cell is combined with solid electrode and electrolyte, one is attributed to the surface SEI layers (R<sub>SEI</sub>) and the other to the charge transfer in electrode material (R<sub>ct</sub>). Thus, all EIS plots are fitted with equivalent circuits by series of R (electrolyte resistance, R<sub>s</sub>) and two parallel RC circuits (Figure S13b). The obtained results are shown in Table S2 in the Supporting Information. As shown in Table S2, the S<sub>0.95</sub>Se<sub>0.05</sub>/C composite cathode demonstrated the highest R<sub>ct</sub> which means the highest resistance compared with other three electrodes. Moreover, the electrical conductivity of the S<sub>1-x</sub>Se<sub>x</sub>/C composite cathodes increases significantly along with the increase of the content of Se.

| Statement                               | $R_s(\Omega)$ | $R_{SEI}(\Omega)$ | $R_{CT}(\Omega)$ | CPE <sub>SEI</sub> (F) <sup>a)</sup> | CPE <sub>CT</sub> (F) <sup>a)</sup> |
|-----------------------------------------|---------------|-------------------|------------------|--------------------------------------|-------------------------------------|
| S/C                                     | 2.39          | 3.00              | 172.8            | 3.28E-6                              | 1.15E-5                             |
| S <sub>0.95</sub> Se <sub>0.05</sub> /C | 2.44          | 1.02              | 67.54            | 1.16 E-7                             | 6.27 E-5                            |
| S <sub>0.94</sub> Se <sub>0.06</sub> /C | 2.43          | 2.52              | 60.1             | 7.93E-7                              | 1.50E-5                             |
| S <sub>0.92</sub> Se <sub>0.08</sub> /C | 2.03          | 3.49              | 27.06            | 4.52 E-6                             | 1.22 E-5                            |
| $S_{0.90}Se_{0.1}/C$                    | 2.04          | 2.72              | 21.96            | 4.03 E-6                             | 1.35 E-5                            |

Table S2. Equivalent-circuit parameters obtained from fitting the experimental impedance spectra.

<sup>a)</sup> CPE<sub>1</sub> and CPE<sub>2</sub>: represent the two resistors with constant phase elements.



**Figure S17.** CV curves for  $S_{0.94}Se_{0.06}/C$  electrode at a scan rate of 0.1 mV s<sup>-1</sup> in the voltage range of 3.0–0.8 V vs Li<sup>+</sup>/Li after 300 cycles test.



Figure S18. (a) SEM and (b) TEM images of the  $S_{0.94}Se_{0.06}/C$  electrode after 500 cycles.