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Table S1. Electrochemical properties of Si-based anode materials

First Loading
charge Capacity mass of
Structure Synthetic methods g p' C-rate active Ref.
capacity retention (%) .
(mAh/g) material
(mg/cm?)
Adv. Mater.,
Si nanoparticle Commercial ~2500 65 (400 cycles) 0.5C 0.2-0.3 2013, 25,
1571.
. . 62.6 (1000 Sci. Rep.,
P M ~1 . S-1.
orous Si g reduction 650 cycles) 05C 0.5-1.0 2014, 4, 5623.
Carbon coating on Si- Nat.
. 98.3 (1000
SiO, core-shell and 1180 cyc(les) 05C 0.2 Nanotechnol.,
. etching 2014, 9, 187.
Si-C yolk-shell RSC Adv.,
Air inflation 1650 65 (40 cycles) 05C N/A 2014, 4,
36218.
Nano Lett.
T late- S ’
Si nanowire emplate-based ~3000 3500050 003004 2013,13,
impregnation cycles)
5740.
Adv. Mater.
M tion of Si ’
Si nanotube greduction of Si02 055 45690 cycles)  0.1C N/A 2012, 24,
nanotubes
5452.
Ti,Si,-coated Coaxial- Nanoscale
Si/ALO; electrospinning and 1540 75 (280 cycles) 05C 1.59 ’
. 2015,7, 6126.
nanotube Al reduction
>95 (100 Nat. Mater.
Si/C CVD 1950 1.0C N/A
cycles) 2010, 9, 353.
Si NP-PANi In-situ 55 (1000 Nat. Commun.
2 1. .2-0.
composite polymerization 500 cycles) 0cC 0.2-03 2013, 4, 1943.
Nat.
> 1
Si pomegranate Microemulsion 2350 99 (l 0())0 0.5C 0.2 Nanotechnol.
everes 2014,9, 187.
Angew. Chem.
Template-
3D porous Si/C emplate-based 2820 90 (100 cycles) 1.0C N/A Int. Ed. 2008,
chemical reduction
47,10151.
Chemical Angew. Chem.
>
3811)/;‘32‘2 etching/thermal 1600 (9:9‘:(122)0 02C 12 Int. Ed. 2012,
decomposition Y 51,2767.
= =65 (1
S,l based Sol-gel process 900 65 (1000 1.0C 1.5 This study
multicomponent cycles)




Figure S1. (a) HAADF-STEM image of the Si-multi-50 particles with lithium silicate and
lithium titanate coating layers. Elemental mapping analysis of (b) Si, (¢) O, and (d) Ti
elements. (¢) Elemental line mapping of the Si-multi-50 from the outer shell to core until the
depth of around 100 nm. (f) Intensity of each element obtained as a function of distance.
From the depth of ~45 nm, intensity of Ti element was abruptly decreased, while Si and O
slightly increased. This result indicates that new layers, lithium silicate, are spatially located

at the interface between Si core and lithium titanate shell.
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Figure S2. (a) TEM image of Si-multi-65 synthesized with molar ratio of Ti:Li:S1=2.5:4:17
and (b) its magnification showing Si covered with 15 nm thick multifunctional coating layers.
(c) TEM image of Si-multi-80 (molar ratio: Ti:Li:Si = 1.25:2:17) and (d) its magnification
showing Si covered with 12 nm thick coating layers. (¢) The contents of Li and Ti in Si-
multi-50, Si-multi-65, and Si-multi-80 samples obtained through inductively coupled plasma

atomic emission spectroscopy (ICP) analysis
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Figure S3. Specific BET surface areas of pristine Si and Si-multicomponents. (a) Nitrogen
adsorption-desorption curves of (a) pristine Si, (b) Si-mul-80, (c¢) Si-multi-65, and (d) Si-mul-
50. The Si-multicomponents show a typical adsorption-desorption hysteresis curve indicating

macro/mesoporous structure, while the pristine Si exhibits non-porous structure.
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Figure S4. XPS characterization of pristine Si, Si-multi-50, Si-multi-65, and Si-multi-80
particles. XPS spectra of (a) Si 2p, (b) Ti 2p and (¢) O 1s of the Si-based materials. The Si-
multicomponents have only one peak at around 103 eV for Si*" due to multi-coating layer on
Si surface. Additionally, we confirmed that lithium titanium and lithium silicate exist on the

Si surface as shown in Fig. S4b and S4c.
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Figure SS. Electrochemical performances of pristine Si NPs and Si-multi-50 electrodes with
high mass loading of 3 mg cm™. (a) First cycle voltage profiles of pristine Si and Si-multi-50
at rate of 0.05 C. (b) Cycling retentions of the pristine Si and the Si-multi-50 electrodes at
rate of 0.1 C for 50 cycles. The Si-multi-50 thick electrode showed highly stable cycling

retention, compared to the pristine Si NPs.
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Figure S6. Rate capabilities of the pristine Si, carbon-coated Si, and Si-multi-50 electrodes
obtained at various discharge rates with a fixed charge rate of 0.2 C. To clearly see the
difference in the rate capability of the three different electrodes, the normalized capacity was
used.
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Figure S7. Voltage profile of Si-multi-50/LiCoO, electrode obtained at a rate of 0.1 C in the
range of 2.5-4.2 V.



Figure S8. TEM images of (a, b) pristine Si particles and (c, d) Si-multi-50 particles after

100 cycles at 0.1 C. The pristine Si particles are seriously aggregated with thick SEI layers
due to a large volume change during the repeated cycling, while the Si-multi-50 particles
show slightly expanded structure with a thin SEI layer. In particular, lithium titanate layers
are clearly seen even after 100 cycles (Fig. S6d), demonstrating that the lithium titanate acts

as buffer layer for a large volume change of Si electrode.



Figure S9. Cross-sectional SEM image of pristine Si electrode (a) before cycle and (b) after
100 cycles at 0.1 C rate. Cross-sectional SEM image of Si-mutli-50 (c¢) before cycle and (d)
after 100 cycles at 0.1 C rate. The pristine Si electrode was expanded to 100 % after cycling,
while the Si-multi-50 showed less volume expansion (37%). These results demonstrate that
the multi-functional coating layers play a key role in reducing the volume expansion of Si by
combining their good mechanical properties and formation of stable SEI layers on the Si

surface.



