
Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2015

Supporting information for

A novel solid-state Li-O₂ battery with an integrated electrolyte and

cathode structure

X. B. Zhu, T. S. Zhao,* Z. H. Wei, P. Tan and G. Zhao

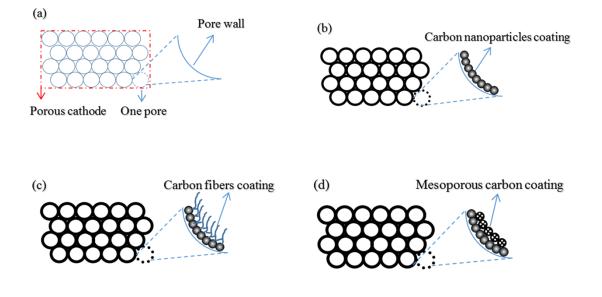
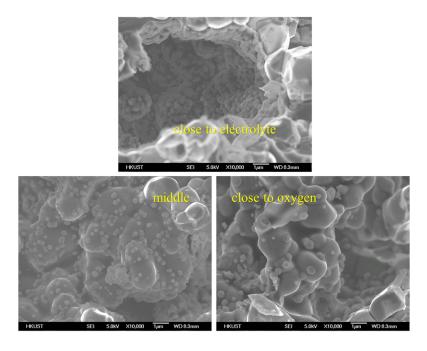


Fig. S1 SEM image to show the particle dimensions of starch served as pore former in the preparation of porous cathode-support. The big particles in SEM imgage should be aggregation.


of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China. E-

mail: metzhao@ust.hk (T.S. Zhao)

^{*} Department of Mechanical and Aerospace Engineering, The Hong Kong University

Fig. S2 Schematic illustration of (a) a blank LATP cathode-support with a high porosity of 78%, (b) a LATP cathode-support coated with monolayer carbon nanoparticles, (c) a LATP cathode-support coated with a bilayer carbon coating (the top layer is carbon fibers and the bottom layer is carbon nanoparticles the same as (b)) and (d) a LATP cathode-support coated with a bilayer carbon coating (the top layer is mesoporous carbon and the bottom layer is carbon nanoparticles the same as (b)).

Fig. S3 SEM images of the carbon-nanoparticles coated cathode (carbon loading, 2 mg cm⁻²) after discharging to 2.0 V at a constant current density of 2.5 mA cm⁻² in pure oxygen. The comparison is used to demonstrte the gradient distribution of the discharge product.