Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2015

Electronic Supporting Information

Power generation from chemically cleaned coals: do environmental benefits of firing cleaner coal outweigh environmental burden of cleaning?

Morten W. Ryberg*, Mikołaj Owsianiak, Alexis Laurent, Michael Z. Hauschild Division for Quantitative Sustainability Assessment, Technical University of Denmark, Produktionstorvet Building 424, 2800 Kgs. Lyngby, Denmark

* corresponding author e-mail: <u>moryb@dtu.dk</u> tel: (+45) 45 25 16 36

Content

- S1 Details of chemical cleaning of coals
- S2 Geographical scope of important processes in coal life cycle
- S3 Data points used for chemical cleaning process
- S4 European power plant efficiencies
- S5 Heat calculation of heat demand for demineralization
- S6 Modeling of sulfur removal
- S7 Environmental impact scores for coal life cycle for ReCiPe
- S8 Statistical comparison of impact scores
- S9 Details of sensitivity analysis
- S10 Unit processes
- S11 References for ESI

S1 Details of chemical cleaning of coals

Recall, that the configuration of the system (such as types of equipment needed) for acid and alkali-acid leaching procedures was based on that proposed by Brooks et al. (2004), and was combined with process conditions (such as types and concentration of acids and/or alkali, reaction temperature and duration) retrieved from studies identified during the literature review.

Chemical cleaning consist of either two leaching steps (alkali and acid leaching), or one step (acid leaching). Both steps are done by mixing the coal with a liquid into a slurry that is heated to leach out ash and sulfur (Brooks et al. 2004). During alkali leaching, alkali dissolves silica and alumina from clay and also other silica and alumina bearing materials present in the coal, forming soluble sodium silicate and sodium aluminate (Mukherjee and Borthakur 2001) (see Eq. S1 and Eq. S2). Ash removal efficiency generally increases steadily as a function of NaOH concentrations, until around 20% NaOH where the rate of ash removal slows down. This is likely due to an initial transformation of the easily accessible minerals which already occurs at low NaOH concentrations. At higher NaOH concentrations the leaching starts to affect firmly bound minerals within the coal matrix, these are not easily removed so the extent of ash removal will not increase much from increasing NaOH concentration (Dash et al. 2013).

$$SiO_2 + 2NaOH \rightarrow Na_2SiO_3 + H_2O$$
 (S1)

$$Al_2O_3 + 2NaOH \rightarrow 2NaAlO_2 + H_2O \tag{S2}$$

The reaction products in Eq S1 and Eq S2 are not very soluble in alkaline solutions, while the products are soluble under acidic conditions (Sharma and Gihar 1991). This is important for the acidic leaching as this removes the soluble derivatives during the acid leaching (Eq. S3 show an example of this reaction with sulfuric acid).

$$Na_2SiO_3 + H_2SO_4 \rightarrow Na_2SO_4 + H_2SiO_3$$
(S3)

Increasing temperature is known to increase the speed of chemical reactions. An increase in temperature will therefore yield a faster reaction between leaching solutions and the coal minerals. This has previously been shown by experimental work, where increased temperature gave larger ash reductions (Waugh and Bowling 1984; Z.Y. Wang et al. 1986; Çulfaz et al. 1996).

S2 Geographical scope of important processes in coal life cycle

Details of the geographical scope for the base scenario (*i.e.* Europe) and for the geographical sensitivity scenarios (*i.e.* U.S.A. and China) are shown in Table S1.

	European scenario (base scenario)			U.S.A. scenario	China scenario			
Process	Geographical scope	Details	Geographical scope	Details	Geographical scope	Details		
Bituminous and Sub-bituminous extraction and supply	German	Coal supply is based on information about import of coal to Germany from various global coal mining locations.	U.S.A.	Coal is mined and extracted in U.S.A. and transported from mining location to storage area by train (Dones et al. 2007)	China	Coal is mined and extracted in China and transported from mining location to storage area by train (Dones et al. 2007)		
Lignite extraction and supply	EU average	Inventory only includes EU averages. Lignite for European use is primarily extracted in Germany (40%), Poland (15%) and Greece (15%) (Dones et al. 2007)	EU average	Inventory data on lignite mining in U.S.A. is not available. Because lignite mining is considered as an established technology, lignite mining in Europe and the impacts associated are assumed to be the same for U.S.A.	EU average	Inventory data on lignite mining in China. is not available. Because lignite mining is considered as an established technology, lignite mining in Europe and the impacts associated are assumed to be the same for China		
Electricity mix	EU average	The electricity mix for Europe primarily consists of nuclear power (28%), hydropower (23%), coal power (17%), natural gas (17%), and lignite (8%) (Dones et al. 2007)	U.S.A.	The electricity mix for U.S.A. primarily consists of coal power (48%), nuclear power (20%), natural gas (18%) and hydropower (7%) (Dones et al. 2007)	China	The electricity mix for China consists of coal power (79%), hydropower (16%), oil (3%) and nuclear power (2%) (Dones et al. 2007)		
Heat mix	EU average	Inventory is based on European production conditions of heat from natural gas.	U.S.A.	Heat production from natural gas in Europe is assumed similar to U.S.A. conditions. However, the electricity used for heat production is based on U.S.A. electricity grid mix	China	Heat production from natural gas in Europe is assumed similar to Chinese conditions. However, the electricity used for heat production is based on Chinese electricity grid mix		
NaOH production	EU average	Inventory only includes EU averages.	EU average	Inventory data on NaOH production in U.S.A. was not available. Because NaOH production is considered an established and mature technology, the production and the impacts associated with production in Europe were assumed to be the same for U.S.A.	EU average	Inventory data on NaOH production in China was not available. Because NaOH production is considered an established and mature technology, the production and the impacts associated with production in Europe were assumed to be the same for China		
Acid production	EU average	Inventory only includes EU averages.	EU average	Because acids are globally traded commodities and production of acids are considered a mature technology, the production and the impacts associated with production in Europe were assumed to be the same for U.S.A.	EU average	Because acids are globally traded commodities and production of acids are considered a mature technology, the production and the impacts associated with production in Europe were assumed to be the same for China		
Methanol production	EU/Global	Electricity is based on EU grid mix. The feedstock and metals are based on global data as these are normally extracted from a global market.	U.S.A./Global	Electricity is based on U.S.A. electricity mix. The feedstock and metals are based on global data as these are normally extracted from a global market	China/Global	Electricity is based on Chinese electricity mix. The feedstock and metals are based on global data as these are normally extracted from a global market		
Pulverized coal power plant	German	Pulverized coal power plant is based on German power plant as included in ecoinvent v2.2. (Frischknecht et al. 2004) and described by (Dones et al. 2007). The inventory is modified based on coal properties, such as energy output (higher heating value dependent) and emissions (e.g. CO_2 emission and emissions of particulate matter).	U.S.A.	The pulverized coal power plant is based on conditions for U.S.A. as included in ecoinvent v2.2. (Frischknecht et al. 2004) and described by (Dones et al. 2007). Pulverized coal plant is modified to account for coal specific inputs, such as CO ₂ emission and emissions of particulate matter which depend on the composition of the coal.	China	The pulverized coal power plant is based on Chinese power plants as included in ecoinvent v2.2 (Frischknecht et al. 2004) The process is modified to account for coal specific inputs, such as CO ₂ emission and emissions of particulate matter which depend on the composition of the coal. Based on (Dones et al. 2007) the Chinese power plant has limited installation of flue gas cleaning, hence, NOx and SOx is not removed from the flue gas, emissions are therefore directly emitted to air.		

I able NT Geographical scope of the main process lised for the base and deographical sensitivity scer	iaring
Table bi deographical scope of the main process used for the base and geographical scholarity see	ianos

S3 Data points used for chemical cleaning process

Table S2 presents 239 data points on process conditions and ash removal from coal via chemical cleaning. The data is based on 10 studies where the efficiency of ash removal with chemical cleaning using alkali-acid or acid leaching has been assessed. The data points include information on process conditions (*e.g.* acid used, temperature and time of leaching) which were used to model the chemical cleaning process. Full LCAs were conducted for each data point to assess the variance in environmental impacts as a result of different chemical cleaning process conditions and coal types cleaned.

	Ach	Tempera	Timo	NaO	Temper	Timo				Maggura	
	Initi	alkali	alkali	H	acid	acid		Acid		d ash	
Leaching	al	leaching	leachin	conc.	leaching	leachin	Acid	conc		content	
process	[%]	[C]	g [hr]	[%]	[C]	g [hr]	used	. [%]	Coal type	[%]	Reference
Alkalı- acid	15.5	157	2.5	5	100	0.2	HCI	10	Bituminous coal	13.5	(Z.Y. Wang et al. 1986)
Alkali-							HCl				
acid	15.5	127	2.5	21	100	0.2	HOL	10	Bituminous coal	8.1	
Alkalı-	15.5	157	2.5	21	100	0.2	HCI	10	Bituminous coal	60	
Alkali-	10.0	107	2.0		100	0.2	HCl	10	Bituinitous cour	0.0	
acid	15.5	187	2.5	21	100	0.2	HOL	10	Bituminous coal	3.0	
Alkalı-	15.5	127	2.5	52	100	0.2	HCI	10	Bituminous coal	60	
Alkali-	10.0	127	2.0		100	0.2	HCl	10	Bituinitous cour	0.0	
acid	15.5	157	0.3	52	100	0.2	HOL	10	Bituminous coal	14.8	
Alkali-	15.5	157	1.0	52	100	0.2	HCI	10	Bituminous coal	10.5	
Alkali-							HCl				
acid	15.5	157	1.8	52	100	0.2		10	Bituminous coal	6.0	
acid	15.5	157	2.5	52	100	0.2	HCI	10	Bituminous coal	4.1	
Alkali-							HCl				
acid	15.5	187	2.5	52	100	0.2	UCI	10	Bituminous coal	2.7	
acid	15.5	187	24.0	52	100	0.2	HCI	10	Bituminous coal	1.7	
Alkali-	1						HCl				
acid	15.5	157	2.5	98	100	0.2	UCI	10	Bituminous coal	3.1	
acid	7.0	157	1.0	5	100	0.2	nci	10	Bituminous coal	4.4	
Alkali-	1						HCl				
acid	7.0	127	1.0	21	100	0.2	HCI	10	Bituminous coal	3.7	
acid	7.0	157	1.0	21	100	0.2	lici	10	Bituminous coal	2.6	
Alkali-					400		HCl	10			
Alkali-	7.0	127	1.0	52	100	0.2	HCI	10	Bituminous coal	3.5	
acid	7.0	157	1.0	52	100	0.2	liei	10	Bituminous coal	1.4	
Alkali-	-	107	1.0		100		HCl	10			
Alkali-	7.0	187	1.0	52	100	0.2	HCI	10	Bituminous coal	0.9	
acid	7.0	157	1.0	98	100	0.2	nei	10	Bituminous coal	1.2	
Alkali-	15.0	0.5		10	0.5	0.5	HCl	10		-	(Dash et al.
Alkali-	15.0	85	2.5	10	85	0.5	HCl	10	Bituminous coal	7.8	2013)
acid	15.0	85	2.5	20	85	0.5		10	Bituminous coal	7.6	
Alkali-	15.0	05	2.5	30	05	0.5	HCl	10	Dituminous acc1	7.5	
Alkali-	15.0	85	2.3	30	85	0.5	HCl	10	Bituminous coai	1.5	
acid	15.0	85	2.5	40	85	0.5		10	Bituminous coal	7.5	
Alkali-	17.0	05	2.5	10	05	0.5	HCl	10	Dituminaua agal	11.0	
Alkali-	17.9	85	2.3	10	85	0.5	HCl	10	Bituminous coai	11.0	
acid	17.9	85	2.5	20	85	0.5		10	Bituminous coal	7.9	
Alkali-	17.0	85	2.5	30	85	0.5	HCI	10	Bituminous coal	7.5	
Alkali-	11.9	0.5	2.3	50	0.5	0.5	HCl	10	Bituninous coal	1.5	1
acid	17.9	85	2.5	40	85	0.5		10	Bituminous coal	7.3	
Alkali-	26.4	85	2.5	10	85	0.5	HCI	10	Bituminous coal	18.0	
Alkali-	20.7	0.5	2.0	10	0.5	0.5	HCl	10	Ditumnous coal	10.0	
acid	26.4	85	2.5	20	85	0.5	LIC:	10 Bituminous coal		15.1	
Alkalı- acid	26.4	85	2.5	30	85	0.5	HCI	10	Bituminous coal	12.0	
Alkali-	26.4	85	2.5	40	85	0.5	HCl	10	Bituminous coal	11.0	1

Table S2. List of data points used and key information used for modelling the chemical cleaning process

Leaching process	Ash Initi al [%]	Tempera -ture, alkali leaching [C]	Time, alkali leachin g [hr]	NaO H conc. [%]	Temper a-ture, acid leaching [C]	Time, acid leachin g [hr]	Acid used	Acid conc . [%]	Coal type	Measure d ash content [%]	Reference
acid Alkali-							HCl				(Mukherjee
acid Alkali	8.4	95	2.0	2	95	8.0	HCl	10	Bituminous coal	5.2	and Borthakur
acid	8.4	95	2.0	4	95	8.0	ner	10	Bituminous coal	5.2	2001)
Alkalı- acid	8.4	95	2.0	8	95	8.0	нсі	10	Bituminous coal	4.8	
Alkalı- acid	8.4	95	2.0	16	95	8.0	нсі	10	Bituminous coal	4.4	
Alkali- acid	10.4	95	2.0	2	95	8.0	HCI	10	Bituminous coal	6.5	
Alkali- acid	10.4	95	2.0	4	95	8.0	HCl	10	Bituminous coal	6.5	
Alkali- acid	10.4	95	2.0	8	95	8.0	HCl	10	Bituminous coal	6.3	
Alkali- acid	10.4	95	2.0	16	95	8.0	HCl	10	Bituminous coal	6.2	
Alkali- acid	11.1	210	2.0	10	80	1.0	H ₂ SO	10	Bituminous coal	0.4	(Yang and Das 1985)
Alkali- acid	6.9	210	2.0	10	80	1.0	H ₂ SO	10	Bituminous coal	0.3	
Alkali-	10	210	2.0	10	80	1.0	H ₂ SO	10	Dituminous cool	0.2	
Alkali-	4.0	210	2.0	10	80	1.0	H ₂ SO	10		0.2	
acid Alkali-	8.7	210	2.0	10	80	1.0	4 H ₂ SO	10	Bituminous coal	0.5	
acid Alkali-	3.2	210	2.0	10	80	1.0	4 H ₂ SO	10	Bituminous coal	0.2	
acid	16.8	210	2.0	10	80	1.0	4	10	Bituminous coal	5.2	
acid	12.2	210	2.0	10	80	1.0	4 4	10	Bituminous coal	0.5	
acid	6.8	210	2.0	10	80	1.0	H ₂ SO 4	10	Bituminous coal	0.3	
Alkali- acid	9.4	210	2.0	10	80	1.0	H ₂ SO 4	10	Bituminous coal	0.6	
Alkali- acid	5.9	210	2.0	10	80	1.0	H ₂ SO	10	Bituminous coal	1.0	
Alkali- acid	20.1	210	2.0	10	80	1.0	H ₂ SO	10	Subbituminous coal	7.0	
Alkali- acid	28.1	95	1.0	10	95	1.0	HCI	10	Lignite	17.4	(Karaca and Önal 2003)
Alkali-	28.0	05	1.0	20	05	1.0	ИСІ	10	Lignita	14.2	
Alkali-	20.9	95	1.0	20	95	1.0	nei	10		14.2	
acid Alkali-	26.0	95	1.0	30	95	1.0	HCI H ₂ SO	10	Lignite	10.2	
acid Alkali-	28.1	95	1.0	10	95	1.0	4 H ₂ SO	10	Lignite	16.4	
acid	28.9	95	1.0	20	95	1.0	4 H-SO	10	Lignite	14.2	
acid	26.0	95	1.0	30	95	1.0	4	10	Lignite	10.6	
acid	18.8	95	1.0	10	95	1.0	HCl	10	Lignite	3.9	
Alkali- acid	17.0	95	1.0	20	95	1.0	HCl	10	Lignite	3.8	
Alkali- acid	15.0	95	1.0	30	95	1.0	HCI	10	Lignite	3.3	
Alkali- acid	18.8	95	1.0	10	95	1.0	H ₂ SO 4	10	Lignite	6.2	
Alkali- acid	7.0	127	0.5	3	100	0.2	HCl	10	Bituminous coal	4.8	(Çulfaz et al. 1996)
Alkali-	7.0	157	0.5	2	100	0.2	HCl	10	Dituminous coal	4.5	
Alkali-	7.0	137	0.5	5	100	0.2	HCl	10	Bituminous coar	4.5	
Alkali-	7.0	187	0.5	3	100	0.2	HCl	10	Bituminous coal	4.1	
acid Alkali-	7.0	127	1.0	3	100	0.2	HCl	10	Bituminous coal	4.4	
acid Alkali-	7.0	157	1.0	3	100	0.2	HCl	10	Bituminous coal	4.0	
acid	7.0	187	1.0	3	100	0.2		HCl 10 Bituminous		3.6	
acid	7.0	127	2.5	3	100	0.2		10	Bituminous coal	4.1	
Alkalı- acid	7.0	157	2.5	3	100	0.2	HCI	10	Bituminous coal	3.7	

		Tempera			Temper						
	Ash	-ture,	Time,	NaO	a-ture,	Time,		A .: 4		Measure	
Leaching	al	leaching	leachin	conc.	leaching	leachin	Acid	conc		content	
process	[%]	[C]	g [hr]	[%]	[C]	g [hr]	used	. [%]	Coal type	[%]	Reference
Alkali- acid	7.0	187	2.5	3	100	0.2	HCI	10	Bituminous coal	3.3	
Alkali- acid	7.0	127	0.5	5	100	0.2	HCl	10	Bituminous coal	4.3	
Alkali-	7.0	167	0.5	- -	100	0.2	HCl	10		1.0	-
Alkali-	7.0	157	0.5	5	100	0.2	HCl	10	Bituminous coal	4.0	-
acid	7.0	187	0.5	5	100	0.2	HCI	10	Bituminous coal	3.6	-
acid	7.0	127	1.0	5	100	0.2		10	Bituminous coal	3.5	-
Alkali- acid	7.0	157	1.0	5	100	0.2	HCl	10	Bituminous coal	3.1	-
Alkalı- acid	7.0	187	1.0	5	100	0.2	HCI	10	Bituminous coal	2.9	-
Alkalı- acid	7.0	127	2.5	5	100	0.2	нсі	10	Bituminous coal	3.2	
Alkali- acid	7.0	157	2.5	5	100	0.2	HCl	10	Bituminous coal	2.8	
Alkali- acid	7.0	187	2.5	5	100	0.2	HCl	10	Bituminous coal	2.5	
Alkali-	7.0	127	0.5	21	100	0.2	HCl	10	Bituminous coal	3.9	-
Alkali-	7.0	157	0.5	21	100	0.2	HCl	10	Dituminous coal	2.5	-
Alkali-	/.0	157	0.5	21	100	0.2	HCl	10	Bituminous coal	3.5	-
acid Alkali-	7.0	187	0.5	21	100	0.2	HCl	10	Bituminous coal	3.2	-
acid	7.0	127	1.0	21	100	0.2	UCI	10	Bituminous coal	2.4	-
acid	7.0	157	1.0	21	100	0.2	псі	10	Bituminous coal	2.1	-
Alkali- acid	7.0	187	1.0	21	100	0.2	HCI	10	Bituminous coal	1.7	
Alkali- acid	7.0	127	2.5	21	100	0.2	HCl	10	Bituminous coal	1.9	
Alkali- acid	7.0	157	2.5	21	100	0.2	HCl	10	Bituminous coal	1.6	
Alkali- acid	7.0	187	2.5	21	100	0.2	HCl	10	Bituminous coal	1.2	
Alkali- acid	7.0	127	0.5	98	100	0.2	HCl	10	Bituminous coal	3.1	
Alkali-	7.0	157	0.5	98	100	0.2	HCl	10	Bituminous coal	27	-
Alkali-	7.0	197	0.5	08	100	0.2	HCl	10	Dituminous coal	2.7	-
Alkali-	7.0	107	0.5	20	100	0.2	HCl	10	Diversion	2.1	-
Alkali-	7.0	127	1.0	98	100	0.2	HCl	10	Bituminous coal	1.3	-
acid Alkali-	7.0	157	1.0	98	100	0.2	HCl	10	Bituminous coal	1.1	_
acid	7.0	187	1.0	98	100	0.2		10	Bituminous coal	0.9	-
acid	7.0	127	2.5	98	100	0.2	HCI	10	Bituminous coal	1.0	-
Alkali- acid	7.0	157	2.5	98	100	0.2	HCl	10	Bituminous coal	0.7	_
Alkali- acid	7.0	187	2.5	98	100	0.2	HCl	10	Bituminous coal	0.3	
Alkali- acid	35.6	127	0.5	3	100	0.2	HCl	10	Lignite	30.2	
Alkali- acid	35.6	157	0.5	3	100	0.2	HCl	10	Lignite	30.3	
Alkali-	35.6	187	0.5	3	100	0.2	HCl	10	Lignite	28.9	1
Alkali-	25.6	107	1.0	2	100	0.2	HCl	10	Lignite	20.1	-
Alkali-	35.6	12/	1.0	3	100	0.2	HCl	10	Lignite	28.1	-
Alkali-	25.0	197	1.0	2	100	0.2	HCl	10	Lignite	20.1	-
Alkali-	55.0	16/	1.0	5	100	0.2	HCl	10		21.2	-
acid Alkali-	35.6	127	2.5	3	100	0.2	HCl	10	Lignite	29.8	-
acid	35.6	157	2.5	3	100	0.2	HCl	10	Lignite	22.9	-
acid	35.6	187	2.5	3	100	0.2		10	Lignite	22.1	
Alkali-	35.6	127	0.5	5	100	0.2	HCl	10	Lignite	29.9	

Leaching process	Ash Initi al [%]	Tempera -ture, alkali leaching [C]	Time, alkali leachin g [hr]	NaO H conc. [%]	Temper a-ture, acid leaching [C]	Time, acid leachin g [hr]	Acid used	Acid conc . [%]	Coal type	Measure d ash content [%]	Reference
acid							HCI				
acid	35.6	157	0.5	5	100	0.2	псі	10	Lignite	28.8	
Alkali- acid	35.6	187	0.5	5	100	0.2	HCl	10	Lignite	23.7	
Alkali- acid	35.6	127	1.0	5	100	0.2	HCl	10	Lignite	29.5	
Alkali- acid	35.6	157	1.0	5	100	0.2	HCl	10	Lignite	28.1	
Alkalı- acid	35.6	187	1.0	5	100	0.2	HCI	10	Lignite	21.3	
Alkalı- acid	35.6	127	2.5	5	100	0.2	нсі	10	Lignite	20.1	
Alkali- acid	35.6	157	2.5	5	100	0.2	HCl	10	Lignite	14.3	
Alkali- acid	35.6	187	2.5	5	100	0.2	HCl	10	Lignite	14.1	
Alkali- acid	35.6	127	0.5	21	100	0.2	HCl	10	Lignite	26.4	
Alkali- acid	35.6	157	0.5	21	100	0.2	HCl	10	Lignite	21.9	
Alkali- acid	35.6	187	0.5	21	100	0.2	HCI	10	Lignite	14.8	
Alkali- acid	35.6	127	1.0	21	100	0.2	HCl	10	Lignite	21.8	
Alkali- acid	35.6	157	1.0	21	100	0.2	HCl	10	Lignite	15.8	
Alkali- acid	35.6	187	1.0	21	100	0.2	HCl	10	Lignite	7.5	
Alkali- acid	35.6	127	2.5	21	100	0.2	HCl	10	Lignite	14.1	
Alkali- acid	35.6	157	2.5	21	100	0.2	HCl	10	Lignite	6.5	
Alkali- acid	35.6	187	2.5	21	100	0.2	HCl	10	Lignite	5.8	
Alkali-	35.6	127	0.5	98	100	0.2	HCl	10	Lignite	24.6	
Alkali- acid	35.6	157	0.5	98	100	0.2	HCl	10	Lignite	12.0	
Alkali- acid	35.6	187	0.5	98	100	0.2	HCl	10	Lignite	9.1	
Alkali- acid	35.6	127	1.0	98	100	0.2	HCl	10	Lignite	13.3	
Alkali- acid	35.6	157	1.0	98	100	0.2	HCl	10	Lignite	10.4	
Alkali-	35.6	187	1.0	98	100	0.2	HCl	10	Lignite	62	
Alkali-	35.6	127	2.5	98	100	0.2	HCl	10	Lignite	93	
Alkali-	35.6	157	2.5	98	100	0.2	HCl	10	Lignite	51	
Alkali-	25.6	197	2.5	00	100	0.2	HCl	10	Lignite	2.4	
Acid	55.6 7.9	0	0.0	98	65	3.0	HF	1.3	Bituminous coal	5.6	(Steel and
Acid	7.9	0	0.0	0	65	3.0	HF	3	Bituminous coal	4.1	Patrick 2001)
Acid	7.9	0	0.0	0	65	3.0	HF	3	Bituminous coal	3.4	
Acid	7.9	0	0.0	0	65	3.0	HF	4	Bituminous coal	2.5	
Acid	7.9	0	0.0	0	65	3.0	HF	6	Bituminous coal	2.4	
Acid	7.9	0	0.0	0	65	3.0	HF	8	Bituminous coal	2.6	
Acid	7.9	0	0.0	0	65	3.0	HF	9	Bituminous coal	2.5	
Acid	7.9	0	0.0	0	65	3.0	HF	10	Bituminous coal	2.6	
Acid	7.9	0	0.0	0	65	3.0	HF	12	Bituminous coal	2.8	
Acid	7.9 7.9	0	0.0	0	65	3.0	HF	15	Bituminous coal	2.8	
Acid	7.9	0	0.0	0	65	3.0	HF	19	Bituminous coal	2.5	
Acid	7.9	0	0.0	0	65.0	3.0	HF	25.5	Bituminous coal	2.7	
Acid	30.3	0	0.0	0	95	1.0	HCl	10	Lignite	24.6	(Karaca and
Acid	30.3	0	0.0	0	95	1.0	H ₂ SO	10	Lignite	22.1	Onal 2003)
Acid	15.4	0	0.0	0	95	1.0	4 HCl	10	Lignite	5.3	
Acid	15.4	0	0.0	0	95	1.0	H ₂ SO	10	Lignite	6.2	
Acid	21.4	0	0.0	0	30	2.0	H ₂ O ₂	30	Lignite	12.7	

		Tempera			Temper						
	Ash Initi	-ture, alkali	Time,	NaO H	a-ture,	Time,		Acid		Measure d ash	
Leaching	al	leaching	leachin	conc.	leaching	leachin	Acid	conc		content	
process	[%]	[C]	g [hr]	[%]	[C]	g [hr]	used	. [%]	Coal type	[%]	Reference
Acid	16.7	0	0.0	0	30	2.0	H ₂ O ₂	30	Lignite	11.5	
Acid	8.8	0	0.0	0	25	4.0	H ₂ O ₂	3	Bituminous coal	7.3	(Mukherjee et
Acid	8.8	0	0.0	0	25	4.0	H_2O_2 H_2O_2	10	Bituminous coal	7.2	al. 2001)
Acid	8.8	0	0.0	0	25	4.0	H ₂ O ₂	15	Bituminous coal	7.0	
Acid	11.0	0	0.0	0	25	4.0	H ₂ O ₂	3	Bituminous coal	9.8	
Acid	11.0	0	0.0	0	25	4.0	H ₂ O ₂	5	Bituminous coal	9.6	
Acid	11.0	0	0.0	0	25	4.0	H ₂ O ₂	10	Bituminous coal	9.5	
Acid	11.0	0	0.0	0	25	4.0	H ₂ O ₂	15	Bituminous coal	9.4	(Multhariaa
							псі				and Borthakur
Acid	8.4	0	0.0	0	95	8.0		10	Bituminous coal	6.3	2001)
Acid	8.8	0	0.0	0	95	0.5	HCl	10	Bituminous coal	6.6	(Mukherjee
Aaid	00	0	0.0		05	10	HCl	10	Subbituminous	6.5	and Borthakur
Aciu	0.0	0	0.0	0	95	4.0	HCl	10	Subbituminous	0.5	2001)
Acid	8.8	0	0.0	0	95	8.0		10	coal	6.3	
							HCl	10	Subbituminous		
Acid	8.8	0	0.0	0	30	8.0	HCl	10	coal Subbituminous	6.8	
Acid	8.8	0	0.0	0	95	0.5	inci	20	coal	6.5	
							HCl		Subbituminous		
Acid	8.8	0	0.0	0	95	4.0	TICI	20	coal	6.4	
Acid	8.8	0	0.0	0	95	8.0	HCI	20	Subbituminous	62	
Trefu	0.0		0.0		75	0.0	HCl	20	Subbituminous	0.2	
Acid	8.8	0	0.0	0	30	8.0		20	coal	6.8	
A .: J	0.0	0	0.0		05	0.5	HCl	20	Subbituminous	C 4	
Acid	0.0	0	0.0	0	93	0.5	HCl	30	Subbituminous	0.4	
Acid	8.8	0	0.0	0	95	4.0		30	coal	6.3	
					0.5		HCl		Subbituminous		
Acid	8.8	0	0.0	0	95	8.0	HCl	30	Subbituminous	0.1	
Acid	8.8	0	0.0	0	30	8.0	nei	30	coal	6.7	
							HNO		Subbituminous		
Acid	8.8	0	0.0	0	95	0.5	3	10	coal	6.3	
Acid	8.8	0	0.0	0	95	4.0		10	coal	6.0	
				-			HNO		Subbituminous		
Acid	8.8	0	0.0	0	95	8.0	3	10	coal	5.8	
Acid	8.8	0	0.0	0	30	8.0	HNO	10	coal	6.8	
Trefu	0.0		0.0		50	0.0	HNO	10	Subbituminous	0.0	
Acid	8.8	0	0.0	0	95	0.5	3	20	coal	5.8	
Acid	88	0	0.0	0	05	4.0	HNO	20	Subbituminous	5.6	
Telu	0.0	0	0.0		75	4.0	3 HNO	20	Subbituminous	5.0	
Acid	8.8	0	0.0	0	95	8.0	3	20	coal	5.6	
A .: J	0.0	0	0.0		20	8.0	HNO	20	Subbituminous	62	
Acid	0.0	0	0.0	0	30	8.0	3 HNO	20	Subbituminous	0.5	
Acid	8.8	0	0.0	0	95	0.5	3	30	coal	5.6	ļ
					0.5	1.0	HNO		Subbituminous		
Acid	8.8	U	0.0	0	95	4.0	3 HNO	30	Subbituminous	5.4	•
Acid	8.8	0	0.0	0	95	8.0	3	30	coal	5.3	
	0.7		0.7				HNO		Subbituminous		
Acid	8.8	0	0.0	0	30	8.0	3	30	coal	5.9	-
Acid	8.8	0	0.0	0	95	0.5	4	10	coal	6.2	
							H ₂ SO		Subbituminous		1
Acid	8.8	0	0.0	0	95	4.0	4	10	coal	5.9	
Acid	8.8	0	0.0	0	95	8.0	H ₂ SO	10	coal	5.8	
	0.0		0.0	Ť		0.0	H ₂ SO		Subbituminous		1
Acid	8.8	0	0.0	0	30	8.0	4	10	coal	6.6	
Acid	88	0	0.0	0	95	0.5	H ₂ SO	20	Subbituminous	61	
Aciu	0.0	0	0.0		95	0.5	4 H ₂ SO	20	Subbituminous	0.1	1
Acid	8.8	0	0.0	0	95	4.0	4	20	coal	5.9	
A	0.0				05	80	H ₂ SO	20	Subbituminous	5.0	
Acid	8.8	U	0.0	0	95	8.0	4 H ₂ SO	20	subbituminous	5.0	•
Acid	8.8	0	0.0	0	30	8.0	4	20	coal	6.4	

Leaching	Ash Initi al [%]	Tempera -ture, alkali leaching [C]	Time, alkali leachin g [hr]	NaO H conc. [%]	Temper a-ture, acid leaching [C]	Time, acid leachin g [hr]	Acid	Acid conc	Coal type	Measure d ash content [%]	Reference
Acid	8.8	0	0.0	0	95	0.5	H ₂ SO	30	Subbituminous coal	5.4	
Acid	8.8	0	0.0	0	95	4.0	H ₂ SO	30	Subbituminous	53	
	0.0	0	0.0	0	95	4.0	H ₂ SO	20	Subbituminous	5.5	
Acid	8.8	0	0.0	0	95	8.0	4 H ₂ SO	30	coal Subbituminous	5.1	
Acid	8.8	0	0.0	0	30	8.0	4 HCl	30	coal Bituminous coal	6.1	
Acid	11.0	0	0.0	0	95	4.0	HCl	10	Bituminous coal	9.0	
Acid	11.0	0	0.0	0	95	8.0	HCl	10	Bituminous coal	8.8	
Acid	11.0	0	0.0	0	30	8.0	HCl	10	Bituminous coal	9.4	
Acid	11.0	0	0.0	0	95	4.0	HCl	20	Bituminous coal	8.8	
Acid	11.0	0	0.0	0	95	8.0	HCl	20	Bituminous coal	8.5	
Acid	11.0	0	0.0	0	30	8.0	HCl	20	Bituminous coal	9.3	
Acid	11.0	0	0.0	0	95	0.5	HCI	30	Bituminous coal	8.9	
Acid	11.0	0	0.0	0	95	8.0	HCl	30	Bituminous coal	8.3	
Acid	11.0	0	0.0	0	30	8.0	HCl	30	Bituminous coal	9.1	
Acid	11.0	0	0.0	0	95	0.5	HNO 3	10	Bituminous coal	8.9	
Acid	11.0	0	0.0	0	95	4.0	HNO 3	10	Bituminous coal	8.5	
Acid	11.0	0	0.0	0	95	8.0	HNO 3	10	Bituminous coal	8.4	
Acid	11.0	0	0.0	0	30	8.0	HNO 3	10	Bituminous coal	9.4	
Acid	11.0	0	0.0	0	95	0.5	HNO 3	20	Bituminous coal	8.7	
Acid	11.0	0	0.0	0	95	4.0	3	20	Bituminous coal	7.6	
Acid	11.0	0	0.0	0	95	8.0	HNO 3	20	Bituminous coal	7.6	
Acid	11.0	0	0.0	0	30	8.0	3 HNO	20	Bituminous coal	9.2	
Acid	11.0	0	0.0	0	95	0.5	HNO 3	30	Bituminous coal	7.8	
Acid	11.0	0	0.0	0	95	4.0	HNO 3	30	Bituminous coal	7.5	
Acid	11.0	0	0.0	0	95	8.0	HNO 3	30	Bituminous coal	7.4	
Acid	11.0	0	0.0	0	30	8.0	HNO 3	30	Bituminous coal	8.4	
Acid	11.0	0	0.0	0	95	0.5	H ₂ SO 4	10	Bituminous coal	8.7	
Acid	11.0	0	0.0	0	95	4.0	H ₂ SO 4	10	Bituminous coal	8.7	
Acid	11.0	0	0.0	0	95	8.0	4 4	10	Bituminous coal	8.6	
Acid	11.0	0	0.0	0	30	8.0	4	10	Bituminous coal	9.5	
Acid	11.0	0	0.0	0	95	0.5	4 4	20	Bituminous coal	8.6	
Acid	11.0	0	0.0	0	95	4.0	H ₂ SO 4	20	Bituminous coal	8.4	
Acid	11.0	0	0.0	0	95	8.0	H ₂ SO 4	20	Bituminous coal	8.1	
Acid	11.0	0	0.0	0	30	8.0	H ₂ SO 4	20	Bituminous coal	9.2	
Acid	11.0	0	0.0	0	95	0.5	4 4	30	Bituminous coal	8.6	
Acid	11.0	0	0.0	0	95	4.0	4 4	30	Bituminous coal	8.0	
Acid	11.0	0	0.0	0	95	8.0	4 H ₂ SO	30	Bituminous coal	7.5	
Acid	11.0	0	0.0	0	30	8.0	4	30	Bituminous coal	9.2	
Acid	34.3	0	0.0	0	30	0.3	HC1	5	Bituminous coal	20.7	(Gulen et al. 2005)
Acid	34.3	0	0.0	U	30	0.5	HNO	10	Bituminous coal	20.8	
Acid	34.3	0	0.0	0	30	0.3	3 HNO	5	Bituminous coal	23.6	
Acid	34.3	0	0.0	0	30	0.3	3	10	Bituminous coal	21.7	

		Tempera			Temper						
	Ash	-ture,	Time,	NaO	a-ture,	Time,				Measure	
	Initi	alkali	alkali	Н	acid	acid		Acid		d ash	
Leaching	al	leaching	leachin	conc.	leaching	leachin	Acid	conc		content	
process	[%]	[C]	g [hr]	[%]	[C]	g [hr]	used	. [%]	Coal type	[%]	Reference
							H_2SO				
Acid	34.3	0	0.0	0	30	0.3	4	5	Bituminous coal	27.7	
							H ₂ SO]
Acid	34.3	0	0.0	0	30	0.3	4	10	Bituminous coal	27.8	

S4 European power plant efficiencies

The average power plant efficiency of pulverized coal power plants (sub-critical and super-critical) in European countries as presented by Graus et al. (2008) is shown in Table S3. Table S3 also includes the average power plant efficiency for Europe and the 95 % confidence interval to illustrate the variability in the overall power plant efficiency. This information was used for defining the average power plant efficiency for Europe as used in the basis LCA scenario. As stated in the main paper, the average and variability ranges for Europe were also applied for power plants in China and U.S.A. This choice does not influence the main goal of this study *i.e.* the comparison between coal cleaning technologies, but will to some extent influence the environmental performance of coal burning in general. The variability in the power plant efficiency was used in the uncertainty and variability analysis.

Table S3. Power plant efficiency in 2005 and average age of operational pulverized coal power plants by the end of 2005 (weighted by capacity), shown for European countries and as a total European average.

Coal-fired plants	Average age	Power plant efficiency
Austria	21	41%
Belgium	34	38%
Bulgaria	30	29%
Czech Republic	31	31%
Denmark	23	43%
Finland	26	38%
France	30	39%
Germany	25	40%
Greece	23	35%
Hungary	37	32%
Ireland	19	40%
Italy	31	37%
Netherlands	21	43%
Poland	29	37%
Portugal	16	39%
Romania	27	35%
Slovakia	36	26%
Slovenia	34	36%
Spain	25	39%
Sweden	31	31%
United Kingdom	33	39%
Arithmetic mean	27.7	36.6%
Standard deviation	5.8	0.045
2.5 percentile	18	28%
97.5 percentile	37	43%

S5 Calculation of heat demand for demineralization

The demineralization process requires heating of the coal slurry for both the leaching steps and for the hydrothermal washing. Data on the heat energy required is not available, and as a best estimate the heat requirements were estimated using the heat equation for calculating the energy required for heating the slurry. The heat equation used is shown in Eq. S4 (Young and Freedman 2008):

$$Q = mc\Delta T$$

(S4)

where Q [cal] is the heat energy required for heating the slurry, ΔT is difference in temperature between the heated material and the outside temperature, m [g] is the mass of the slurry, and c [cal g⁻¹ °C⁻¹] is the specific heat capacity of the slurry, which is assumed to be the same as water. The slurry is assumed kept and heated in a 5 mm stainless steel cylinder insulated with 10 mm glass wool. The heat loss equation is based on conductive heat transfer through a material. Eq. S5 shows the heat transfer through two materials used for insolation.

 $q = \Delta T / ((s_1 / k_1 A) + (s_2 / k_2 A))$ (S5)

where q is heat transfer (W), A is heat transfer area (m²), k_1 is thermal conductivity of material 1 (W m⁻¹K⁻¹), k_2 is thermal conductivity of material 2 (W m⁻¹K⁻¹) where, s_1 is thickness of material 1 (m) and s_2 is thickness of material 2 (m)

For coal leaching we assume that the process is performed in a stainless steel reactor insulated with glass wool. The steel is assumed to be 0.05 m and $k_{\text{Stainless steel}} = 16 \text{ W m}^{-1} \text{ K}^{-1}$. The glass wool insulation is assumed to be 0.1 m and $k_{\text{Glass wool insulation}} = 0.4 \text{ W m}^{-1} \text{ K}^{-1}$. Based on this the heat loss for a 100 °C liquid with a 0.00010 m³ volume per hour is 0.0020 MJ hr⁻¹. The energy required for heating the liquid from 12 °C to 100 °C is 37 MJ. The energy from heat loss per hour accounts for ca. 0.005% of the energy required for the initial heating. Because of this small contribution heat loss is considered negligible in the total energy balance.

S6 Modeling of sulfur removal

A general problem with combustion of coal is the formation of NO_x and SO_x whom both contribute to air pollution, and are emitted as a result of the content in the coal used (Franco and Diaz 2009). Mukherjee and Borthakur (2001) showed that treatment with alkali or acid yields a reduction in sulfur content, while combined leaching such as alkali-acid leaching yields a larger reduction compared to treatment with alkali or acid alone. Sulfur is removed by reactions with NaOH as shown in Eq. S6 where pyrite is transformed into a sodium salt, which can be removed during the leaching.

$$30NaOH + 8FeS_2 \rightarrow 4Fe_2O_3 + 14Na_2S + Na_2S_2O_3 + 15H_2O$$

$$\tag{S6}$$

S6.1 Modelling approach

The regression model for sulfur reduction is based on curve fitting to measured data (Mukherjee et al. 2001; Mukherjee and Borthakur 2003) (see Table S4). The data sets included variables which were recognized as important *i.e.* NaOH concentration and acid concentration (in terms of molarity) and time of NaOH leaching. The data was analysed to reveal the overall trend in sulfur reduction as a function of change. For the time of acid leaching a trend similar to NaOH leaching is assumed. A sulfur reduction factor (SRF) is derived for multiplication with the initial sulfur content (see Eq. S7 and Eq. S8).

$$SRF_{Coal} = SRF_{NaOH} \times SRF_{Acid} \times SRF_{Time,NaOH} \times SRF_{Time,Acid}$$
(S7)

$$Sulfur content_{Treated coal} = S_{Start} \times SRF_{Coal}$$
(S8)

Where SRF_{NaOH} is the reduction factor from alkali leaching, SRF_{Acid} is the reduction factor from acid leaching, $SRF_{Time,NaOH}$ is the reduction factor as a function of alkali leaching time and the $SRF_{Time,Acid}$ is the reduction factor as a function of acid leaching time. The reduction factors are multiplied to give the SRF_{Coal} in Eq. S7. The SRF_{Coal} is multiplied with the initial sulfur content (S_{Start}) to produce the resulting sulfur content after chemical cleaning (see Eq. S8).

For deriving the SRF_{Coal} , studies isolating and varying parameters during the experimental work was needed to identify the actual change sulfur content from a change to a specific parameter independent of other parameters. The references used for identifying the effect of varying isolated parameters are shown in Table S4. The data for each parameter was fitted to 17 different regression curves of the types: linear, exponential, power and sigmoidal. The regression curve with the highest R² was used. The curve type chosen and the original regression parameters are given in Table S4.

Sulfur reduction	n						
Variable	Model type	Regression curve	Regression	Data	Variable	R ²	Data
			parameters	points			reference
	Weibull		A ₁ =0.92	18	Acid		
Acid	model	$SRF_{Acid} = A_1 - A_2 \times \exp(-A_3 \times x^{A_4})$	A ₂ =0.24		concentration	0.05	(Mukherjee
concentration			A ₃ =0.94		in solution	0.95	et al. 2001)
			$A_4 = -0.78$		[M]		
	Logistic	4	A -0.81	8	NaOH		(Mukherjee
NaOH	model	$SRF_{v,ou} = \frac{A_1}{(1-x)^2}$	$A_1 = 0.01$ $A_2 = 0.19$		concentration	0.93	and
concentration		$1 + A_2 \times \exp(-A_3 \times x)$	$A_2 = 0.17$ $A_3 = 0.83$		in solution	0.75	Borthakur
			A3 0.05		[%]		2001)
Time _{NaOH}	Logarithm	$SRF_{T} = A_1 + A_2 \times \ln(x)$	A ₁ =0.86	50	Time of	0.93	(Mukherjee
	model	11me,NaOH 1 2 C	$A_2 = -0.02$		leaching [hr]		and
							Borthakur
							2001)
Time	Logarithm	$SRE = A + A \times \ln(r)$	A ₁ =3.92	Same as	Time of	Same as	Same as
Acid	model	Time, Acid II II Z X III (X)	A ₂ =-0.05	Time _{NaOH}	leaching [hr]	Time _{NaOH}	Time _{NaOH}

Table S4 Overview of input parameters used for deriving the sulfur reduction model, this includes best fitting function, regression parameters and R^2 .

After the determination of each parameter specific SRF, the overall sulfur removal is compared with measured data. The combined SRF_{Coal} is compared to 86 data point from three peer-reviewed studies. Based on these comparisons, all regression parameters in Table S4 were adjusted to produce the best with the available data points. The quality of the fit was based on the R² value, in this way all regression parameters are adjusted to yield the highest R². The model was compared to an external data set consisting of 41 data point from 4 peer-reviewed studies. The model fit using an external data set produced a predictive squared correlation coefficient for external validation (Q²) equal to 0.8. A 1:1 plot showing the predictability of the sulfur reduction model for the internal and the external data set against measured data is shown in Figure S1. It shows from Figure S1 that the modelled sulfur content from chemical cleaning is slightly overestimating the sulfur content compared to the measured sulfur content. We consider these predictions as sufficiently accurate to employ the model for prediction of sulphur removal for the data points collected in our study.

Figure S1. Performance of our model for prediction of sulphur removal from leaching conditions (eq S8). A perfect agreement between model and experimental results would result in alignment of the data points on the first diagonal (black line)

S7 Environmental impact scores for coal life cycle for ReCiPe

Environmental impacts scores for all 18 impact categories available in ReCiPe are shown in Figure S2. For terrestrial toxicity, Figure S2 shows that chemically cleaned coals do not perform better as compared to physically cleaned and raw coals. This worse performance of chemically cleaned coal is mainly due to emission of phosphorous to soil (from the methanol production process). However, rather than a toxicant (as classified in ReCiPe), phosphorus is a macro nutrient, contributing to eutrophication. When phosphorus is excluded from the comparison, terrestrial ecotoxicity impact scores from firing chemically cleaned coals show an impact profile similar to freshwater ecotoxicity.

Figure S2. Impact scores and the associated 95% confidence intervals for the impact categories available in ReCiPe 2008 per functional unit ("output of 1 MJ of electricity produced from a pulverized coal power plant"). The results are sorted in ascending order after ash content in the raw coal.

S8 Statistical comparison of impact scores

Table S5 shows a comparison between chemical and physical coal cleaning for all included impact categories. The table shows the percentage cases where chemical cleaning performs better than physical cleaning and vice versa. The two last columns show the percentage cases where chemical cleaning performs significantly better than physical cleaning and vice versa. The difference is considered significant if 95% confidence intervals do not overlap. The confidence intervals were estimated using Monte Carly simulation as described in the main paper.

Table S5 Number of cases where either chemically demineralized or physically demineralized coal perform better or perform significantly better (with 95 % confidence). Impact categories where chemically cleaned coals perform better are marked with bold italics.

	Cases perform	ning better [%]	Cases performing s	ignificantly better [%]
	Chemical	Physical	Chemical	Physical
Impact category	demineralization	demineralization	demineralization	demineralization
Agricultural land occupation	0	100	0	33
Climate change	0	100	0	100
Fossil depletion	0	100	0	100
Freshwater ecotoxicity	0	100	0	97
Freshwater eutrophication	3	97	0	93
Human toxicity	4	96	0	81
Ionising radiation	0	100	0	100
Marine ecotoxicity	2	98	0	94
Marine eutrophication	0	100	0	0
Metal depletion	0	100	0	100
Natural land transformation	0	100	0	100
Ozone depletion	0	100	0	100
Particulate matter formation	0	100	0	23
Photochemical oxidant formation	0	100	0	0
Terrestrial acidification	0	100	0	15
Terrestrial ecotoxicity	0	100	0	100
Urban land occupation	0	100	0	59
Water depletion	0	100	0	100

S9 Details of sensitivity analysis

The sensitivity analysis included 27 parameters that were included in the LCA model for the coal life cycle. The parameters included the coal composition (*e.g.* ash, carbon and sulfur content), the chemical cleaning process conditions (*e.g.* leaching duration, leaching process temperature, acid recovery efficiency) and power plant conditions (*e.g.* life time of power plant, power plant efficiency and NOx and SOx removal efficiency). Only parameters which produced an average sensitivity coefficient, $|S_{coef}| \ge 0.3$ or a maximum $|S_{coef}| \ge 0.5$ were considered to be important for the model results. In addition, parameters which are well known and given as part of literature data in Table S2 (*i.e.* ash content, acid concentration and NaOH concentration) are not included in Table S6. The important parameters used for uncertainty and variability analysis which are not part of Table S2 are shown in Table S6.

Demineralization process								Power plant	
Impact category	Acid recovery	Centrifuge	Filter press	Methanol in	Sodium hydroxide	Coal to liquid	Net overall	Eff. SOx removal	Eff. NOx
	ejj.	electricity use	electricity use	washing liquid	recovery eff.	ratio	efficiency		removal
Agricultural land occupation	-0.011 (-0.044;-	0.083 (0:0.12)	0.05	0.023	0.023 (-	0.3	08(08.08)	0 (0:0 001)	0.002 (0:0.004)
Agricultural land occupation	0.002)	0.085 (0,0.12)	(0.019;0.062)	(0.008;0.028)	0.009;0.24)	(0.015;1.54)	-0.8 (-0.8,-0.8)	0 (0,0.001)	0.002 (0,0.004)
Climate change	-0.008 (-0.032;- 0.001)	0.13 (0;0.18)	0.076 (0.065;0.095)	0.21 (0.17;0.26)	-0.006 (- 0.022;0.068)	0.25 (0.04;0.96)	-0.8 (-0.8;-0.8)	0.001 (0;0.005)	0.003 (0;0.006)
Fossil depletion	-0.005 (-0.02;- 0.001)	0.081 (0;0.1)	0.048 (0.045;0.053)	0.45 (0.41;0.51)	-0.013 (-0.04;0)	0.16 (0.082;0.34)	-0.8 (-0.8;-0.8)	0 (0;0.002)	0.003 (0;0.005)
Freshwater ecotoxicity	-0.042 (-0.15;- 0.007)	0.068 (0;0.13)	0.04 (0.019;0.064)	0.44 (0.2;0.65)	-0.106 (-0.33;0)	0.12 (0.038;0.23)	-0.8 (-0.8;-0.79)	0.004 (0;0.013)	0.004 (0;0.006)
Freshwater eutrophication	-0.016 (-0.057;- 0.003)	0.088 (0;0.17)	0.051 (0.024;0.079)	0.37 (0.17;0.56)	-0.032 (-0.097;0)	0.16 (0.082;0.26)	-0.8 (-0.8;-0.8)	0.001 (0;0.004)	0.003 (0;0.005)
Human toxicity	-0.129 (-0.45;- 0.023)	0.16 (0;0.32)	0.094 (0.039;0.15)	0.11 (0.044;0.18)	-0.059 (-0.17;0)	0.2 (0.073;0.32)	-0.8 (-0.8;-0.8)	0.008 (0;0.028)	0.002 (0;0.004)
Ionising radiation	-0.189 (-1.05;- 0.049)	0.34 (0;0.48)	0.25 (0.12;0.48)	0.16 (0.072;0.31)	-0.517 (-1.81;0)	0.47 (0.28;0.85)	-0.8 (-0.8;-0.8)	0.001 (0;0.006)	0.003 (0;0.008)
Marine ecotoxicity	-0.103 (-0.35;- 0.017)	0.097 (0;0.2)	0.056 (0.023;0.098)	0.24 (0.095;0.4)	-0.122 (-0.36;0)	0.19 (0.083;0.32)	-0.8 (-0.8;-0.79)	0.005 (0;0.017)	0.006 (0;0.011)
Marine eutrophication	-0.013 (- 0.032;0.017)	0.11 (0;0.23)	0.057 (0.023;0.13)	0.22 (0.091;0.4)	-0.035 (-0.087;0)	0.15 (- 0.005;0.34)	-0.798 (-0.8;- 0.77)	0.005 (0;0.033)	-1.707 (- 3.07;0.033)
Metal depletion	-0.069 (-0.26;- 0.01)	0.098 (0;0.14)	0.058 (0.052;0.073)	0.54 (0.47;0.64)	-0.13 (-0.59;0)	0.25 (0.12;0.52)	-0.799 (-0.8;- 0.79)	0.003 (0;0.018)	0.017 (0;0.034)
Natural land transformation	-0.009 (- 0.033;0.003)	0.051 (0;0.071)	0.03 (0.027;0.037)	0.66 (0.58;0.74)	-0.017 (-0.05;0)	0.19 (0.1;0.47)	-0.8 (-0.8;-0.79)	0.001 (0;0.008)	0.007 (0;0.015)
Ozone depletion	-0.12 (-0.43;- 0.019)	0.074 (0;0.1)	0.044 (0.032;0.051)	0.63 (0.44;0.73)	-0.002 (- 0.015;0.068)	0.34 (0.21;0.91)	-0.8 (-0.8;-0.8)	0.001 (0;0.006)	0.007 (0;0.013)
Particulate matter formation	-0.024 (-0.057;- 0.003)	0.1 (0;0.24)	0.055 (0.027;0.12)	0.18 (0.087;0.36)	-0.06 (-0.15;0)	0.17 (0.041;0.4)	-0.799 (-0.8;- 0.78)	-0.322 (- 1.05;0.022)	-0.894 (- 1.76;0.022)
Photochemical oxidant formation	-0.012 (- 0.028;0.016)	0.1 (0;0.22)	0.055 (0.024;0.12)	0.25 (0.11;0.44)	-0.029 (-0.074;0)	0.14 (- 0.008;0.43)	-0.799 (-0.8;- 0.78)	-0.051 (- 0.17;0.029)	-1.586 (- 2.87;0.029)
Terrestrial acidification	-0.025 (-0.05;- 0.003)	0.13 (0;0.24)	0.067 (0.032;0.12)	0.22 (0.11;0.38)	-0.072 (-0.19;0)	0.16 (0.005;0.39)	-0.799 (-0.8;- 0.79)	-0.594 (- 1.74;0.017)	-0.881 (- 1.87;0.017)
Terrestrial ecotoxicity	-0.176 (-0.59;- 0.028)	0.082 (0;0.11)	0.048 (0.04;0.055)	0.66 (0.53;0.77)	-0.036 (-0.13;0)	0.2 (0.092;0.52)	-0.8 (-0.8;-0.8)	0.001 (0;0.006)	0.006 (0;0.012)
Urban land occupation	-0.078 (-0.5;- 0.017)	0.37 (0;0.51)	0.26 (0.095;0.57)	0.18 (0.061;0.38)	-0.146 (-0.37;0)	0.5 (0.051;1.52)	-0.8 (-0.8;-0.8)	0.004 (0;0.02)	0.003 (0;0.011)
Water depletion	-0.014 (- 0.054;0)	0.096 (0;0.13)	0.057 (0.05;0.064)	0.12 (0.1;0.14)	-0.029 (-0.11;0)	0.12 (0.028;0.38)	-0.8 (-0.8;-0.79)	0.001 (0;0.008)	0.003 (0;0.008)

Table S6 Sensitivity analysis of model parameters for the impact categories included in ReCiPe. Only parameters shown to be sensitive based on the S_{coef} and not part of Table S2 are included in this table. The coefficients in bold have an average $|S_{coef}| \ge 0.3$ or a maximum $|S_{coef}| \ge 0.5$. The sensitivity coefficients are shown as the average coefficient (the minimum coefficient; the maximum coefficient). The parameters in *italic* are included in the uncertainty/variability analysis.

S 10 Unit processes

The full model inventory as created in GaBi is shown in Table S7. The table is divided into main processes (*e.g.* the chemical cleaning process). The source (*i.e.* ecoinvent v2.2 is "ecoinvent" and specifically developed processes are named "own"), geographic coverage and reference year is indicated for all processes.

Process	Process name		Source	Geographical scope	Year	Comment	
Supply of coal to Germany							
Supply of total to Germany Supply of total to Germany DE: hard coal supply mix <u-so></u-so>							
Coal mined and transported from Latin America		RLA: hard coal, at regional storage <agg></agg>	ecoinvent	Latin America and the Caribbean	1989		
Coal mined and transported from Australia		AU: hard coal, at regional storage <agg></agg>	ecoinvent	Australia	1989		
Coal mined and transported from Asia		CPA: hard coal, at regional storage <agg></agg>	ecoinvent	Centrally Planned Asia and China	1989		
Coal mined and transported from Kazakhstan		ZA: hard coal, at regional storage <agg></agg>	ecoinvent	Kazakhstan	1989		
Coal mined and transported from North Amer	ica	RNA: hard coal, at regional storage <agg></agg>	ecoinvent	North America	1989		
Coal mined and transported from Russia		RU: hard coal, at regional storage <agg></agg>	ecoinvent	Russian Federation	1989		
Coal mined and transported from Central and Eastern Europe		EEU: hard coal, at regional storage <agg></agg>	ecoinvent	Central and Eastern Europe	1989		
Coal mined and transported from Western Eur	rope	WEU: hard coal, at regional storage <agg></agg>	ecoinvent	Western Europe	1989		
Transport of coal within Europe with ship		RER: transport, barge <agg></agg>	ecoinvent	Europe	2000		
Transport of coal within Europe with train		RER: transport, freight, rail <agg></agg>	ecoinvent	Europe	2000		
Transport of coal from Australia with ship		OCE: transport, transoceanic freight ship <agg></agg>	ecoinvent	Oceanic	2000		
Electricity for storage and preparation of coal		UCTE: electricity, medium voltage, production UCTE, at grid <u-so></u-so>	ecoinvent	Union for the Co- ordination of Transmission of Electricity	2004		
European electricity grid		RER: electricity, production mix RER <agg></agg>	ecoinvent	Europe	2004	Electricity from European grid for production of medium voltage electricity	
Supply of lignite to Europe					•		
Supply of lignite to Europe RE		R: lignite, at mine <agg></agg>	ecoinvent	Europe	1994		
Physical coal cleaning process				•			
The removal of ash and sulphur via physical Co- cleaning		l to energy 1 (Selector) <agg></agg>	Own			This process accounts for the ash and sulphur removed from the raw coal. This includes the electricity usage required for the physical cleaning process.	
Chemical coal demineralization process				4			
NaOH leaching	NaC	DH leaching <u-so></u-so>	Own			This process is specifically developed for this study. The inputs for this process are: electricity, heat, water and Sodium hydroxide. The unit processes for the inputs are described in the designated sections in this table.	
Centrifuge of coal slurry	Cen	trifuge <u-so></u-so>	Own			This process is specifically developed for this study. The input for this process is: electricity. The unit process for European electricity described in the designated section in this table.	
Acid leaching	Aci	d leaching <u-so></u-so>	Own			This process is specifically developed for this study. The inputs for this process are: electricity, heat, water and acid. The unit processes for the inputs are described in the designated sections in this table.	
Filter pressing of coal slurry	Filte	er press <u-so></u-so>	Own			This process is specifically developed for this study. The input for this process is: electricity. The unit process for European electricity described in the designated section in this table.	

Table S7. Unit processes used to model life cycle inventories for European baseline scenario

Process	Process name	Source	Geographical scope	Year	Comment
Hydrothermal wash	Hydrothermal wash <u-so></u-so>	Own			This process is specifically developed for this study. The inputs for this
					process are: heat, water and methanol. The unit processes for the inputs are
					described in the designated sections in this table.
Filter pressing of washed coal slurry	Filter press (hydrothermal wash) <u-so></u-so>	Own			This process is specifically developed for this study. The input for this
					process is: electricity. The unit process for European electricity described
					in the designated section in this table.
Drying of cleaned coal	Dryer <u-so></u-so>	Own			This process is specifically developed for this study. The input for this
					process is: heat. The unit process for European heat described in the
		·	P	2005	designated section in this table.
power plant	KEK: transport, lorry >16t, fleet average <agg></agg>	econvent	Europe	2005	
Recovery of sodium hydroxide with lime	Sodium hydroxide recovery <u-so></u-so>	Own			This process is specifically developed for this study. The input for this
					process is: electricity. The unit process for European electricity described
					in the designated section in this table.
Recovery of acids with gypsum	Acid recovery <u-so></u-so>	Own			This process is specifically developed for this study. The input for this
					process is: electricity. The unit process for European electricity described
Innuts and usessions/dispased of feedsteels fo	n chamical dominantian process				in the designated section in this table.
Inputs and recovery/disposal of feedstock to	r chemical demineralization process	aggingent	Europa	2000	
	plant ecoinvent <agg></agg>	econvent	Europe	2000	
Recovery of sodium hydroxide	RER: sodium hydroxide, 50% in H2O, production mix, at	ecoinvent	Europe	2000	Process is inverted to model recovery and avoidance of virgin sodium
					nydroxide
Destantion of externation and	Production of actos	[:	Emera	2001	
Production of support acid	RER: sulphuric acid, ilquid, at plant <agg></agg>	econvent	Europe	2001	
	ecoinvent <agg></agg>	econvent	Europe	2000	
Production of nitric acid	RER: nitric acid, 50% in H2O, at plant <agg></agg>	ecoinvent	Europe	2001	
Production of hydrogen fluoride	GLO: hydrogen fluoride, at plant <agg></agg>	ecoinvent	World	2006	
Production of hydrogen peroxide	RER: hydrogen peroxide, 50% in H2O, at plant <agg></agg>	ecoinvent	Europe	1995	
	Recovery of acids				
Recovery of sulphuric acid	RER: sulphuric acid, liquid, at plant <agg></agg>	ecoinvent	Europe	2001	Process is inverted to model recovery and avoidance of virgin acid
Recovery of hydrochloric acid	RER: hydrochloric acid, 30% in H2O, at plant ecoinvent <agg></agg>	ecoinvent	Europe	2000	Process is inverted to model recovery and avoidance of virgin acid
Recovery of nitric acid	RER: nitric acid, 50% in H2O, at plant <agg></agg>	ecoinvent	Europe	2001	Process is inverted to model recovery and avoidance of virgin acid
Recovery of hydrogen fluoride	GLO: hydrogen fluoride, at plant <agg></agg>	ecoinvent	World	2006	Process is inverted to model recovery and avoidance of virgin acid
Recovery of hydrogen peroxide	RER: hydrogen peroxide, 50% in H2O, at plant <a href="https://www.searcharge-state-s</td> <td>ecoinvent</td> <td>Europe</td> <td>1995</td> <td>Process is inverted to model recovery and avoidance of virgin acid</td>	ecoinvent	Europe	1995	Process is inverted to model recovery and avoidance of virgin acid
Production of process water	RER: tap water, at user	ecoinvent	Europe	2000	
Production of gypsum	CH: gypsum, mineral, at mine <agg></agg>	ecoinvent	Switzerland	2003	
Production of lime	CH: lime, hydrated, packed, at plant <agg></agg>	ecoinvent	Switzerland	2002	
Production of methanol	GLO: methanol, at plant <u-so></u-so>	ecoinvent	World	2001	
Production of natural gas	RER: natural gas, high pressure, at consumer <agg></agg>	ecoinvent	Europe	2000	
Electricity for natural gas production	UCTE: electricity, medium voltage, production UCTE, at grid <agg></agg>	ecoinvent	Union for the Co- ordination of Transmission of Electricity	2004	
Treatment of used process water	CH: treatment, sewage, to wastewater treatment, class 2 <u-so></u-so>	ecoinvent	Switzerland	2000	
Electricity for waste water treatment	RER: electricity, production mix RER <agg></agg>	ecoinvent	Europe	2004	
Recovery and use of precipitated inert	CH: portland calcareous cement, at plant (inverted)	ecoinvent	Switzerland	2001	Use of precipitated lime and gypsum together with mineral matter from

Process	Process name		Geographical scope	Year	Comment			
mineral matter and used lime and gypsum	<agg></agg>				chemical demineralization process as calcareous input for cement production. The "CH: portland calcareous cement, at plant" has been inverted to model the avoided burdens			
Heat production								
Heat produced from natural gas burning	RER: heat, natural gas, at boiler atm. low-NOx condensing non-modulating <100kW <u-so></u-so>	ecoinvent	Europe	2000				
Burning of natural gas	RER: natural gas, burned in boiler atm. low-NOx condensing non-modulating <100kW <u-so></u-so>	ecoinvent	Europe	2000	Burning of natural gas to production energy			
Production of natural gas boiler	RER: gas boiler <agg></agg>	ecoinvent	Europe	1998	Production of the boiler where natural gas is burned			
Natural gas produced	CH: natural gas, low pressure, at consumer <agg></agg>	ecoinvent	Switzerland	2000				
Low voltage electricity	UCTE: electricity, low voltage, production UCTE, at grid <u-so></u-so>	ecoinvent	Union for the Co- ordination of Transmission of Electricity	2004	Electricity input for the natural gas burning process			
Medium voltage electricity	UCTE: electricity, medium voltage, production UCTE, at grid <u-so></u-so>	ecoinvent	Union for the Co- ordination of Transmission of Electricity	2004				
European electricity grid	RER: electricity, production mix RER <agg></agg>	ecoinvent	Europe	2004	Electricity from European grid for production of medium voltage electricity			
Construction and final decommissioning of	Construction and final decommissioning of pulverized coal power plant							
Construction and decommissioning of power plant	GLO: hard coal power plant, 500MW <u-so></u-so>	ecoinvent	World	1992				
Electricity use for construction and decommissioning	RER: electricity, production mix RER <agg></agg>	ecoinvent	Europe	2004				
Transport of construction materials	RER: transport, lorry >16t, fleet average <agg></agg>	ecoinvent	Europe	2005				
Coal burning and electricity production								
Combustion of coal in power plant to produce thermal electricity	DE: hard coal, burned in power plant <u-so></u-so>	Modified, ecoinvent	Germany	2000	The process is modified for air emissions, and removal of SOx, NOx and PM to avoid air emissions. The emissions to air are made coal specific. The subsequent treatment of slag from ash and collection of SOx and NOx is made dependent on the coal input and the efficiency of the collection technology. The thermal energy produced is a function of the higher heating valye of the coal			
Electricity production in power plant	DE: electricity, hard coal, at power plant <u-so></u-so>	Modified, ecoinvent	Germany	2000	The electricity generated from burning coal (<i>i.e.</i> MJ produced per MJ thermal input). The process is adjusted to fit the average pulverized power plant efficiency.			
Landfilling of hard coal ash from coal burning								
Landfilling of the coal ash slag	DE: disposal, hard coal ash, 0% water, to residual material landfill <u-so></u-so>	ecoinvent	Germany	2000				
Electricity use for landfilling process	RER: electricity, production mix RER <agg></agg>	ecoinvent	Europe	2004				
Transport of coal with truck								
Transport from coal storage with truck	RER: transport, lorry >16t, fleet average	ecoinvent	Europe	2005	Transport with truck from coal storage to power plant and from coal storage to chemical demineralization plant			

S11 References for ESI

Brooks P, Waugh B, Clark K, Weir S (2004) WO Pat., 2004/039927 Al - Process for Demineralising Coal.

- Çulfaz M, Ahmed M, Gürkan S (1996) Removal of mineral matter and sulfur from lignites by alkali treatment. Fuel Process Technol 47:99–109. doi: 10.1016/0378-3820(96)01005-3
- Dash PS, Kumar SS, Banerjee PK, Ganguly S (2013) Chemical Leaching of High-Ash Indian Coals for Production of Low-Ash Clean Coal. Miner Process Extr Metall Rev 34:223–239. doi: 10.1080/08827508.2012.656775
- Dones R, Bauer C, Röder A (2007) Kohle. Sachbilanzen von Energiesystemen Grundlagen für den ökologischen Vergleich von Energiesystemen und den Einbezug von Energiesystemen Ökobilanzen für die Schweiz. Final Rep. ecoinvent No. 6-VI
- Franco A, Diaz AR (2009) The future challenges for "clean coal technologies": Joining efficiency increase and pollutant emission control. Energy 34:348–354. doi: 10.1016/j.energy.2008.09.012
- Frischknecht R, Jungbluth N, Althaus H-J, et al. (2004) The ecoinvent Database: Overview and Methodological Framework. Int J Life Cycle Assess 10:3–9. doi: 10.1065/lca2004.10.181.1
- Graus W, Roglieri M, Jaworski P, Alberio L (2008) Efficiency and capture-readiness of new fossil power plants in the EU. European Commission, Utrecht
- Gulen J, Doymaz I, Piskin S, Toprak S (2005) Removal of mineral matter from Silopi-Harput asphaltite by acid treatment. Energy sources 27:1457–1464. doi: 10.1080/009083190523307
- Karaca H, Önal Y (2003) Demineralisation of lignites by single and successive pretreatment. Fuel 82:1517– 1522. doi: 10.1016/S0016-2361(03)00069-3
- Mukherjee S, Borthakur P (2001) Chemical demineralization/desulphurization of high sulphur coal using sodium hydroxide and acid solutions. Fuel 80:2037–2040. doi: 10.1016/S0016-2361(01)00094-1
- Mukherjee S, Borthakur P. (2003) Effects of alkali treatment on ash and sulphur removal from Assam coal. Fuel Process Technol 85:93–101. doi: 10.1016/S0378-3820(03)00139-5
- Mukherjee S, Borthakur PC (2004) Demineralization of subbituminous high sulphur coal using mineral acids. Fuel Process Technol 85:157–164. doi: 10.1016/S0378-3820(03)00140-1
- Mukherjee S, Mahiuddin S, Borthakur P (2001) Demineralization and desulfurization of subbituminous coal with hydrogen peroxide. Energy & fuels 15:1418–1424.
- Sharma DK, Gihar S (1991) Chemical cleaning of low grade coals through alkali-acid leaching employing mild conditions under ambient pressure. Fuel 70:663–665. doi: 10.1016/0016-2361(91)90182-A
- Steel KM, Patrick JW (2001) The production of ultra clean coal by chemical demineralisation. Fuel 80:2019–2023. doi: 10.1016/S0016-2361(01)00092-8
- Waugh A, Bowling K (1984) Removal of mineral matter from bituminous coals by aqueous chemical leaching. Fuel Process Technol 9:217–233.

Yang RT, Das K (1985) Coal demineralization using sodium hydroxide and acid solutions. Fuel 64:735–742.

- Young HD, Freedman RA (2008) Sears and Zemansky's university physics : with modern physics, 12th ed. Addison-Wesley
- Z.Y. Wang, Ohtsuka Y, Tomita A (1986) Removal of mineral matter from coal by alkali treatment. Fuel Process Technol 13:279–289. doi: http://dx.doi.org/10.1016/0378-3820(86)90036-6