Supplementary Information

Uniform Yolk-Shell Sn₄P₃@C Nanospheres as High-Capacity and Cycle-Stable Anode Materials for Sodium-Ion Batteries

Jun Liu,^{b,c} Peter Kopold,^b Chao Wu,^b Peter A. van Aken,^b Joachim Maier^b and Yan Yu^{a,b}*

^aKey Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Enginering, University of Science and Technology of China, Hefei, 230026, Anhui, China.

E-mail: yanyumse@ustc.edu.cn

^bMax Planck Institute for Solid State Research, Heisenbergstr. 1, Stuttgart, 70569, Germany ^cSchool of Materials Science and Engineering, South China University of Technology, Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, Guangzhou 510641, China

Experimental Sections

Synthesis of monodisperse SnO_2 hollow nanospheres: The template of SnO_2 hollow nanospheres was synthesized by a facile and low-cost hydrotheraml route. In a typical synthesis process, $K_2SnO_3 \cdot 3H_2O$ (0.768 g) and urea (0.96 g) were dissolved in a 160 mL mixture of ethanol and distilled water, which was then transferred into a Teflon-lined autoclave. The sealed vessel was then maintained at 190 °C for 15 h, and cooled naturally. The samples were collected and washed six times with ethanol and water, respectively, and dried under vacuum at 50 °C.

Synthesis of uniform yolk-shell Sn@C nanospheres: In a typical procedure, for carbon-coated of these SnO₂ hollow nanospheres, 0.34 g the as-synthesized SnO₂ and 1.36 g glucose were hydrothermal treated at 190 °C for 10 h, and cooled naturally. The samples were collected and washed six times with ethanol and water, respectively, and dried under vacuum at 50 °C. Finally, these SnO₂@CP (carbon-rich polysaccharide) hollow nanospheres were further annealed at 700 °C in an H₂/Ar flow for 6 h to obtain the precursor of yolk-shell Sn@C nanospheres.

Synthesis of uniform yolk-shell Sn₄P₃@C nanospheres: The chemical transformation of metal Sn into metal phosphide Sn₄P₃ was achieved by a facile and low-cost solvotheraml route. In a typical procedure, appropriate amounts (Table S1) of yolk-shell Sn@C nanospheres and red phosphorus with the molar ratio of 4:6 (Sn/P) were added into ethylenediamine solution and kept stirring for 30 min. The dispersion was transferred into a Teflon-lined autoclave. The sealed vessel was then maintained at 200 °C for 40 h, and cooled naturally. The samples were collected and washed four times with diluted HCl (0.05 mol/L), water and ethanol, respectively, and dried under vacuum at 50 °C.

Group No.	Ratio Sn/P	Synthesis condition	Phase composition
1	4/3	160 °C, 10 h	$\mathrm{Sn}+\mathrm{Sn_4P_3}^a$
2	4/3	200 °C, 40 h	$Sn_4P_3 + Sn$
3	4/6	200 °C, 10 h	$Sn_4P_3 + Sn$
4	4/6	200 °C, 40 h	$\mathrm{Sn}_4\mathrm{P}_3 + \mathrm{Sn}^a$
5	4/6	200 °C, 60 h	$\mathrm{Sn}_4\mathrm{P}_3+\mathrm{Sn}^a$
6	4/6	200 °C, 40 h ^b	Sn_4P_3
7	4/9	200 °C, 40 h	$Sn_4P_3 + Sn^a + unknown phase$
8	4/15	200 °C, 40 h	Sn ₄ P ₃ + unknown phase

Table S1. Summary of the selected solvotheraml reaction in ethylenediamine with the appropriate amounts of Sn@C and red phosphorus

^aMinor amount of the phase.

^bAfter solvotheraml synthesis the sample was washed with diluted HCl (0.05 mol/L) for 10 h.

Synthesis of bare Sn_4P_3 nano/microspheres: Firstly, the precursor of bare Sn nanospheres was synthesized by a simple polyol method. In a typical synthesis, 0.7 g polyvinyl pyrrolidone was dissolved in 50 mL of diethylene glycol (DEG) at room temperature. The solution was heated up to 170 °C, after which 5 mmol SnCl₂ was added. A freshly prepared solution of NaBH₄ (0.872 g in 10 mL of DEG) was then added dropwise with stirring. After 20 min at 170 °C, the precursor of uniform Sn nanospheres was obtained. The chemical transformation of metal Sn nanospheres into metal phosphide Sn_4P_3 nano/microspheres is the same as that of yolk-shell $Sn_4P_3@C$ nanospheres (see the synthesis details of yolk-shell $Sn_4P_3@C$ nanospheres).

Materials characterization

The collected products were characterized by an X-ray diffractometry (XRD) on a Rigaku-DMax 2400 diffractometer equipped with the graphite monochromatized Cu K α radiation flux at a scanning rate of $0.02^{\circ}s^{-1}$. Scanning electron microscopy (SEM) analysis was carried using a Zeiss Gemini DSM 982 scanning electron microscope. The structure of these SnO₂ hollow nanospheres, yolk-shell Sn@C and Sn₄P₃@C nanospheres was investigated by means of transmission electron microscopy (TEM, JEOL 4000FX). The amorphous carbon content in the final Sn₄P₃@C is about 10 wt%, as measured by weighing the residual carbon hollow nanospheres after complete etching embedded Sn₄P₃ nanoparticles. The tin and phosphorus contents in these yolk-shell Sn₄P₃@C nanospheres were measured by inductively coupled plasma atomic emission spectroscopy (ICP-AES).

Electrochemical testing

The electrochemical performances of the as-prepared products were measured by using two-electrode Swagelok-type cells. For the preparation of the working electrode, the mixture of yolk-shell $Sn_4P_3@C$ nanospheres, carbon black, and polyvinylidene fluoride (PVDF) in the weight ratio of 70:20:10 was ground in a mortar with *N*-methy1-2-pyrrolidone (NMP) as solvent to make slurry. The mass loading of the electrodes is about 1.9 mg/cm². For assembling Na-ion

batteries, a Na foil was utilized as counter electrode and glass fiber (GF/D) from Whatman was used as a separator. The electrolyte was 1 M NaClO₄ in propylene carbonate (PC) with 5 vol% addition of fluoroethylene carbonate (FEC). CV measurements were performed on VoltaLab 80 electrochemical workstation at a scan rate of 0.1 mV s⁻¹. Charge/discharge (0.01–2.0 V) tests were performed on an Arbin MSTAT battery test system under ambient temperature.

Fig. S1 Low- and high-magnification SEM images of carbon-rich polysaccharide-coated SnO₂ hollow nanospheres via hydrothermally carbonization.

Table S2 Stable specific capacities of sodium storage for yolk-shell Sn ₄ P ₃ @C nanospheres and
only Sn ₄ P ₃ yolks.

Current density (C)	Yolk-shell Sn ₄ P ₃ @C	Only Sn ₄ P ₃ yolks
Current density (C)	nanospheres (mA h g ⁻¹)	(mA h g ⁻¹)
0.1	711	790
0.2	648	720
0.4	586	651
0.8	523	581
1.5	455	505
3	379	421

Fig. S2 More TEM and HRTEM images of the yolk-shell Sn@C nanospheres at different selected areas, which clearly reveal their highly crystallized nature.

Fig. S3 More TEM and HRTEM images of the yolk-shell Sn₄P₃@C nanospheres at different selected areas, which clearly reveal their highly crystallized nature.

Fig. S4 TEM and HRTEM images of yolk-shell Sn_4P_3 @C nanospheres at the 1st discharged state, which show that the inner Sn_4P_3 yolk was fully expanded in the hollow carbon shell (the inset) and was converted into composites of $Na_{15}Sn_4$ and Na_3P .

Fig. S5 (a,b) Low- and high-magnification SEM images of the precursor of bare Sn nanospheres obtained by NaBH₄ reduction of SnCl₂; (c,d) low- and high-magnification SEM images of the product of bare Sn_4P_3 nano/microspheres obtained by direct phosphorization of bare Sn nanospheres (without the protection of carbon shells, the bare Sn nanospheres partly melted and aggregated together, forming much bigger microspheres); (e) Na-ion storage performance of these bare Sn₄P₃ nano/microspheres at 1.5C rate.

Fig. S6 SEM images of yolk-shell Sn_4P_3 @C nanospheres after 50 charging/discharging cycles at 0.1C rate, showing that the electroactive inner nanoparticles were still encapsulated in the carbon shells.