Electronic Supplementary Information (ESI) for

Polypyrrole-coated manganese dioxide with multiscale architectures for ultrahigh capacity energy storage[†]

Jun Seop Lee^{II}, Dong Hoon Shin^{II} and Jyongsik Jang*

School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), 599 Gwanangno, Gwanak-gu, Seoul, 151-742 (Korea).

Fax: +82-2-888-7295; Tel: 82-2-880-8348; e-mail: jsjang@plaza.snu.ac.kr

Figure S1. (a) X-ray diffraction (XRD) pattern and high-resolution X-ray photoelectron spectroscopy (XPS) spectra of (b) Mn 2p and (c) O 1s of MnO₂ micronodules on the carbon cloth.

The X-ray diffraction (XRD) pattern of the MnO₂ micronodules (MnO₂MNs) is shown in the **Figure S1a**. The peaks of the MnO₂MNs can be well indexed to tetragonal α -MnO₂ (JCPDS 44-0141). A broad diffraction peak at *ca*. 25.6 cm⁻¹ was observed, indicating the identical crystalline carbon structure for the carbon cloth. The chemical composition of the micronodules was confirmed using X-ray photoelectron spectroscopy (XPS). **Figure S1b** shows the high-resolution XPS spectra for the Mn 2p peak. Spin-orbit Mn 2p_{1/2} and Mn 2p_{3/2} peaks were located at 642.3 and 653.9 eV, which is consistent with the reported values for MnO₂. Additionally, the O 1s spectrum can be deconvoluted into two components, suggesting the presence of two types of oxygen-containing species (**Figure S1c**). The bands at 529.9 eV and 531.2 eV were assigned to the oxygen bonds of Mn-O and Mn-OH, respectively.

Figure S2. (a) Raman spectra of the $MnO_2@PPy$ of before (black) and after (red) heat-annealing. High resolution XPS patterns of C 1s of (b) before and (c) after heat annealing of $MnO_2@PPy$.

To confirm the structure change of PPy layer, Raman and X-ray photoelectron spectroscopy (XPS) were conducted. First, Raman spectra were suggested as shown in **Figure S2a**. The I_G/I_D ratio of annealed MnO₂@PPy (~ 1.1) was higher than for without annealing (~ 0.8) and the peaks of after annealing were sharper than those of without annealing. In addition, X-ray photoelectron spectroscopy (XPS) of two materials was also suggested. The peaks of without annealed were attributed as follows: the 284.3 eV peak to C=C bonds, the 285.3 eV peak to C-C bonds, the 286.6 eV peak to C-O bonds, and the 284.9 eV peak to C-N bonds (**Figure S2b**). However, peaks of annealed MnO₂@PPy were changed as shown in **Figure S2c**. It displayed a large peak at 284.6 eV, which was attributed to graphitic sp² hybridization, and decreasing to additional peaks at 285.5 and 287.9 eV, which were assigned to C-O and C-N, respectively.

3. IR drop of various electrodes with different current density

Figure S3. IR drop as a function of the current density of MnO_2NR (red)-, MnO_2MN (blue)- and $MnO_2@CPPy$ (green)-based electrodes.

Figure S4. Coulombic efficiency of MnO_2 -based electrodes at three-electrode systems with enhancing cycle numbers: (a) MnO_2NR ; (b) MnO_2MN ; (c) $MnO_2@CPPy$.

Figure S5. (a) Field effect scanning electron microscopy (FE-SEM) images of carbon coated Co_3O_4 ($Co_3O_4@C$) micro-sheet decorated carbon cloth (inset: enlarged image of $Co_3O_4@C$ micro-sheets). (b) High-resolution transmission electron microscopy (HR-TEM) image of the $Co_3O_4@C$ micro-sheet.

6. CV and galvanostatic charge/discharge curves of Co₃O₄@C electrode

Figure S6. (a) Cyclic voltammetry (CV) (scan rate: 50 mV s⁻¹) and (b) galvanostatic charge-discharge curves (current density: 20 mA cm₋₂) of the Co_3O_4 -based electrodes.

Cyclic voltammetry (CV) of Co₃O₄ based electrodes (Co₃O₄ microsheet and Co₃O₄@C microsheet) were measured using three electrode cell composed of 1-M KOH aqueous electrolyte with Pt counter electrode and Ag/AgCl reference electrode. The CV curves of the electrodes were conducted at scan rate of 50 mV s⁻¹ over the voltage range -0.9 to 0 V. As shown in **Figure S6a**, the current density of Co₃O₄@C microsheet was 221.3 mA cm⁻² that was *ca*. 3-fold larger than that of Co₃O₄ microsheet electrode (72.3 mA cm⁻²) due to carbon coating layer enhanced electrochemical activity of the active materials at negative voltage range.^[S1]Galvanostatic charge-discharge curve of the electrodes were also carried out at 20 mA cm⁻² of current density as shown in **Figure S6b**. The discharge time also rapidly

increased with carbon coating on the Co_3O_4 surface (Co_3O_4 microsheet: 74.3 s and $Co_3O_4@C$ microsheet: 232.2 s). Additionally, IR drop of the electrodes decreased with carbon coating layer (0.1 V to 0.03 V) owing to carbon also acted as conductive layer in the electrode structure.

[S1] X. Lu, M. Yu, G. Wang, T. Zhai, S. Xie, Y. Ling, Y. Tong and Y. Li, Adv. Mater. 2013, 25, 267.

Figure S7. (a) Schematic diagram of asymmetric supercapacitors (ASCs) composed of two different electrodes ($MnO_2@CPPy$: positive; $Co_3O_4@C$: negative) and a polymer-gel electrolyte. (b) Two digital photographs (front and side directions) of bend ASCs.

Figure S8. Bode phase plot of the ASCs (frequency: 200 kHz to 20 mHz).

9. Other specific capacitance variation of ASC with different current density

Figure S9. Areal (C_A) and gravimetric (C_G) capacitance of the ASCs with different current densities (20 to 100 mA cm⁻²).

Figure S10. Coulombic efficiency of the ASCs with increasing cycle numbers.