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1. XRD and XPS spectra of MnO2 micronodules
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Figure S1. (a) X-ray diffraction (XRD) pattern and high-resolution X-ray photoelectron spectroscopy 
(XPS) spectra of (b) Mn 2p and (c) O 1s of MnO2 micronodules on the carbon cloth.

The X-ray diffraction (XRD) pattern of the MnO2 micronodules (MnO2MNs) is shown in the Figure 

S1a. The peaks of the MnO2MNs can be well indexed to tetragonal α-MnO2 (JCPDS 44-0141). A broad 

diffraction peak at ca. 25.6 cm-1 was observed, indicating the identical crystalline carbon structure for 

the carbon cloth. The chemical composition of the micronodules was confirmed using X-ray 

photoelectron spectroscopy (XPS). Figure S1b shows the high-resolution XPS spectra for the Mn 2p 

peak. Spin-orbit Mn 2p1/2 and Mn 2p3/2 peaks were located at 642.3 and 653.9 eV, which is consistent 

with the reported values for MnO2. Additionally, the O 1s spectrum can be deconvoluted into two 

components, suggesting the presence of two types of oxygen-containing species (Figure S1c). The 

bands at 529.9 eV and 531.2 eV were assigned to the oxygen bonds of Mn-O and Mn-OH, respectively.
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2. MnO2@PPy structure analysis
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Figure S2. (a) Raman spectra of the MnO2@PPy of before (black) and after (red) heat-annealing. High 
resolution XPS patterns of C 1s of (b) before and (c) after heat annealing of MnO2@PPy.

To confirm the structure change of PPy layer, Raman and X-ray photoelectron spectroscopy (XPS) 

were conducted. First, Raman spectra were suggested as shown in Figure S2a. The IG/ID ratio of 

annealed MnO2@PPy (~ 1.1) was higher than for without annealing (~ 0.8) and the peaks of after 

annealing were sharper than those of without annealing. In addition, X-ray photoelectron spectroscopy 

(XPS) of two materials was also suggested. The peaks of without annealed were attributed as follows: 

the 284.3 eV peak to C=C bonds, the 285.3 eV peak to C-C bonds, the 286.6 eV peak to C-O bonds, and 

the 284.9 eV peak to C-N bonds (Figure S2b). However, peaks of annealed MnO2@PPy were changed 

as shown in Figure S2c. It displayed a large peak at 284.6 eV, which was attributed to graphitic sp2 

hybridization, and decreasing to additional peaks at 285.5 and 287.9 eV, which were assigned to C-O 

and C-N, respectively.
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3. IR drop of various electrodes with different current density
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Figure S3. IR drop as a function of the current density of MnO2NR (red)-, MnO2MN (blue)- and 
MnO2@CPPy (green)-based electrodes.
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4. Coulombic efficiency of various electrodes

Figure S4. Coulombic efficiency of MnO2-based electrodes at three-electrode systems with enhancing 
cycle numbers: (a) MnO2NR; (b) MnO2MN; (c) MnO2@CPPy.
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5. FE-SEM and TEM images of Co3O4@C architectures

Figure S5. (a) Field effect scanning electron microscopy (FE-SEM) images of carbon coated Co3O4 
(Co3O4@C) micro-sheet decorated carbon cloth (inset: enlarged image of Co3O4@C micro-sheets). (b) 
High-resolution transmission electron microscopy (HR-TEM) image of the Co3O4@C micro-sheet.
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6. CV and galvanostatic charge/discharge curves of Co3O4@C electrode

Figure S6. (a) Cyclic voltammetry (CV) (scan rate: 50 mV s-1) and (b) galvanostatic charge-discharge 
curves (current density: 20 mA cm-2) of the Co3O4-based electrodes.

Cyclic voltammetry (CV) of Co3O4 based electrodes (Co3O4 microsheet and Co3O4@C microsheet) 

were measured using three electrode cell composed of 1-M KOH aqueous electrolyte with Pt counter 

electrode and Ag/AgCl reference electrode. The CV curves of the electrodes were conducted at scan rate 

of 50 mV s-1 over the voltage range -0.9 to 0 V. As shown in Figure S6a, the current density of 

Co3O4@C microsheet was 221.3 mA cm-2 that was ca. 3-fold larger than that of Co3O4 microsheet 

electrode (72.3 mA cm-2) due to carbon coating layer enhanced electrochemical activity of the active 

materials at negative voltage range.[S1] Galvanostatic charge-discharge curve of the electrodes were also 

carried out at 20 mA cm-2 of current density as shown in Figure S6b. The discharge time also rapidly 
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increased with carbon coating on the Co3O4 surface (Co3O4 microsheet: 74.3 s and Co3O4@C 

microsheet: 232.2 s). Additionally, IR drop of the electrodes decreased with carbon coating layer (0.1 V 

to 0.03 V) owing to carbon also acted as conductive layer in the electrode structure.

[S1] X. Lu, M. Yu, G. Wang, T. Zhai, S. Xie, Y. Ling, Y. Tong and Y. Li, Adv. Mater. 2013, 25, 267.
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7. Schematic diagram and photograph image of ASCs
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Figure S7. (a) Schematic diagram of asymmetric supercapacitors (ASCs) composed of two different 
electrodes (MnO2@CPPy: positive; Co3O4@C: negative) and a polymer-gel electrolyte. (b) Two digital 
photographs (front and side directions) of bend ASCs.
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8. Bode plot of ASC
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Figure S8. Bode phase plot of the ASCs (frequency: 200 kHz to 20 mHz).
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9. Other specific capacitance variation of ASC with different current density
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Figure S9. Areal (CA) and gravimetric (CG) capacitance of the ASCs with different current densities (20 
to 100 mA cm-2).
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10. Coulombic efficiency of ASC
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Figure S10. Coulombic efficiency of the ASCs with increasing cycle numbers.
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