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Scalability and feasibility of photoelectrochemical H2 evolution: The ultimate limit of 
Pt nanoparticle as an HER catalyst 
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I. Chorkendorff

We provide here the theoretical background and computational details of our model, as well as selected results that are helpful 
for understanding the details of reaction kinetics and mass transport in the model. The details of the model may not be 
interesting for the general readership, but for those interested in the topic, we provide here the details of what is modeled, and 
how that is done mathematically. Additionally, XPS analysis of deposited Pt loadings is provided.

Theory
Coupled mass transport and kinetic model of HER on Pt

The voltage losses of an electrode consist of mass transport and reaction kinetics. Because mass transport losses correspond to 
concentration changes at the vicinity of the electrode surface, they affect the reaction kinetics and for an accurate description of 
a reaction both processes have to be considered together as a coupled system. In this section we describe first the general 
implications of mass transport on HER (and HOR) overpotential, and thereafter our HER model, starting from reaction kinetics 
and continuing with mass transport in electrolyte. The description includes not only the final equations of the model, but also 
the derivation of some of them in order to clarify their physical basis. The purpose of this section is to explain our general 
understanding of HER/HOR on Pt and then describe the used model in enough detail that interested readers can reproduce it on 
their own.

Model of HER reaction kinetics on Pt

HER and HOR on platinum (Pt) are among the most studied reactions in electrochemistry. Despite that, the exact reaction 
mechanism and the exchange current density are current research topics1,2. For characterization studies acids are more 
problematic than alkaline electrolytes, because the kinetics are significantly faster, meaning that e.g. rotating disc electrodes 
(RDE) do not allow high enough mass transport rates to enable reliable estimation of reaction kinetics1,3,4. The total reaction in 
acid is

2 H+ + 2e- ⇄ H2  (S1)

HER/HOR can proceed via the Volmer, Heyrovsky and Tafel reaction steps. In acid these reactions are:
Volmer

H+ + e- ⇄ Had (S2a)

Heyrovsky

H+ + e- + Had ⇄ H2        (S2b)

Tafel

2Had ⇄ H2  (S2c)

The total reaction is typically considered to proceed through Volmer-Tafel or Volmer-Heyrovsky paths1,3,5 and recent results 
indicate Volmer-Tafel path, with Volmer as the rate limiting step (RLS) 1,2,6.
The exchange current density of HER on Pt in acid is known to be high, but the exact value is debated. Values up to 600 mA/cm2 
have been reported3, and although the exact value depends on temperature, at room temperature it appears to be at least 
about 100 mA/cm2 6. However, it is more common to encounter significantly lower values (in the order of 0.1 – 10 mA/cm2) 
together with Tafel step as the RLS, in contrast to Volmer as the RLS with recently reported high exchange current densities3,6. A 
likely explanation is that the low exchange current densities correspond to mass transport limitation of HOR, which produces an 
overpotential that resembles the kinetic overpotential when Tafel step is the RLS (details in next section)2,6,7.
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We use the dual-pathway kinetic model derived by Wang et al.5 as a basis to derive expressions for HER/HOR that rigorously 
consider the concentrations of protons and H2 as well as the fraction of reaction sites on Pt covered with adsorbed hydrogen 
atoms. We assume that the reaction proceeds via Volmer-Tafel path with Volmer step as the RLS. The total current density is 
then given by the Volmer rate (νV, iV), as the Heyrovsky rate is assumed to be zero and no electrons are involved in Tafel reaction 
(νT). However the Tafel reaction affects the Volmer rate and overpotential via the fraction of reaction sites covered by adsorbed 
hydrogen (θ).
It is commonly accepted that the symmetry factor of Heyrovsky and Volmer reactions is ½. The net rate of each step is the 
difference of the forward (HOR) and backward (HER) rates:

(S3a)
𝜈𝑇= 𝑘𝑇(1 ‒ 𝜃)2𝐶𝐻2

‒ 𝑘 ‒ 𝑇𝜃
2

(S3b)
𝜈𝐻= 𝑘𝐻(1 ‒ 𝜃)𝐶𝐻2

𝑒

𝑞𝑒𝑉
2𝑘𝐵𝑇

‒ 𝑘 ‒ 𝐻𝜃𝐶
𝐻+ 𝑒

‒ 𝑞𝑒𝑉
2𝑘𝐵𝑇

(S3c)
𝜈𝑉= 𝑘𝑉𝜃𝑒

𝑞𝑒𝑉
2𝑘𝐵𝑇

‒ 𝑘 ‒ 𝑉(1 ‒ 𝜃)𝐶
𝐻+ 𝑒

‒ 𝑞𝑒𝑉
2𝑘𝐵𝑇

The ks represent the rate constant of the reactions, those with ‘-‘ in their subscript correspond to the reverse reaction (i.e. HER) 
and CH2 and CH

+ are the concentrations of hydrogen molecules and protons. The voltage V is the electrode potential minus the 
electrostatic potential in electrolyte, i.e. Vs – Vl in the notation used later. When the electrode is at the reversible potential (V0), 
the net current is zero and all forward rates are equal to the respective backward rates, so the exchange rates for the reactions 
can be expressed as

(S4a)
𝜈0𝑇= 𝑘𝑇(1 ‒ 𝜃0)2𝐶 0

𝐻2
= 𝑘 ‒ 𝑇(𝜃0)2

(S4b)
𝜈0𝐻= 𝑘𝐻(1 ‒ 𝜃0)𝐶 0

𝐻2
𝑒

𝑞𝑒𝑉0
2𝑘𝐵𝑇

= 𝑘 ‒ 𝐻𝜃0𝐶 0
𝐻+ 𝑒

‒ 𝑞𝑒𝑉0
2𝑘𝐵𝑇

(S4c)
𝜈0𝑉= 𝑘𝑉𝜃

0𝑒

𝑞𝑒𝑉0
2𝑘𝐵𝑇

= 𝑘 ‒ 𝑉(1 ‒ 𝜃0)𝐶 0
𝐻+ 𝑒

‒ 𝑞𝑒𝑉0
2𝑘𝐵𝑇

Superscript 0 denotes a concentration or coverage at V=V0. We denote the overpotential with

(S5a)
𝜂𝑠𝑙=

𝑞𝑒(𝑉𝑠 ‒ (𝑉𝑙+ 𝑉0))
𝑘𝐵𝑇

where the potential of the electrode is Vs and V0+Vl is the potential in the electrolyte, with V0 corresponding to Nernst potential 
of the reaction with the bulk concentrations (i.e. 0 V vs. RHE). Potential Vl corresponds to voltage losses in the electrolyte 
(equation (S22)), but not to the total mass transport losses. Note that this difference is not the total overpotential of the 
simulated system, but the driving force of the reaction at catalyst surface. The total overpotential corresponds to Vs at the 
“bottom” of the TiO2 substrate (z=-100 nm, see also equation (S26)), and Vs at Pt surface includes ohmic losses in TiO2 and Pt. 
However, since these losses were negligible (less than 1 mV in all studied cases) 

(S5b)𝜂𝑡𝑜𝑡𝑎𝑙= 𝑉𝑠(𝑧=‒ 100𝑛𝑚)≈ 𝑉𝑠,𝑃𝑡

Dividing the reaction rates with their exchange rates yields

(S5c)

𝜈𝑇= 𝜈0𝑇[( 1 ‒ 𝜃

1 ‒ 𝜃0)2
𝐶𝐻2

𝐶 0
𝐻2

‒ ( 𝜃

𝜃0)2]
(S5d)

𝜈𝐻= 𝜈0𝐻[( 1 ‒ 𝜃

1 ‒ 𝜃0)
𝐶𝐻2

𝐶 0
𝐻2

𝑒

𝜂𝑠𝑙
2 ‒

𝐶
𝐻+

𝐶 0
𝐻+

𝜃

𝜃0
𝑒

‒
𝜂𝑠𝑙
2 ]



(S5e) 

𝜈𝑉= 𝜈0𝑉[ 𝜃𝜃0𝑒
𝜂𝑠𝑙
2 ‒

𝐶
𝐻+

𝐶 0
𝐻+
( 1 ‒ 𝜃

1 ‒ 𝜃0)𝑒
‒

𝜂𝑠𝑙
2 ]

The total current density is then the sum of the Volmer and Heyrovsky rates (multiplied by the elementary charge and Avogadro 
number). Because we assume the Heyrovsky rate to be zero, the electric current corresponds to Volmer reaction. 

(S6)

𝑖= 𝑖𝑉= 𝑞𝑒𝑁𝐴𝜈0𝑉[ 𝜃𝜃0𝑒
𝜂𝑠𝑙
2 ‒

𝐶
𝐻+

𝐶 0
𝐻+

( 1 ‒ 𝜃

1 ‒ 𝜃0)𝑒
‒

𝜂𝑠𝑙
2 ] = 𝑖0𝑉[ 𝜃𝜃0𝑒

𝜂𝑠𝑙
2 ‒

𝐶
𝐻+

𝐶 0
𝐻+

( 1 ‒ 𝜃

1 ‒ 𝜃0)𝑒
‒

𝜂𝑠𝑙
2 ]

The main difference of our model to the original model of Wang et al. is that we do not neglect proton concentration, and 
therefore the resulting model can account for its effect on the HER/HOR kinetics. 

Since we simulate the reaction in conditions that correspond to CH+
0=1M and pH2=1bar, the reference conditions correspond to 

Standard Hydrogen Electrode (or equivalently RHE at pH=0). Surface proton and H2 concentrations are given by the mass 
transport model coupled with this model, but the hydrogen coverage (θ) needs to be solved. The equilibrium surface coverage of 
adsorbed H, θ0, is assumed to be 0.67 based on the results of Markovic and Ross8. 
Wang et al. derived both an exact solution and an approximation for the coverage at potential range that corresponds to HOR. 
However, they assumed infinitely fast mass transport, so the concentrations were neglected. Taking the concentration-
dependence of the reactions into account changes the exact solution a bit. In steady state the coverage does not change with 
respect to time

 (S7)

𝑑𝜃
𝑑𝑡
= 2𝜈𝑇+ 𝜈𝐻 ‒ 𝜈𝑉= 0

Using the concentration-dependent expressions for the reaction rates (equation (S5)) we get

 (S8)

‒ 2𝜈0𝑇[( 1 ‒ 𝜃

1 ‒ 𝜃0)2
𝐶𝐻2

𝐶 0
𝐻2

‒ ( 𝜃

𝜃0)2] ‒ 𝜈0𝐻[( 1 ‒ 𝜃

1 ‒ 𝜃0)
𝐶𝐻2

𝐶 0
𝐻2

𝑒

𝜂𝑠𝑙
2 ‒

𝐶
𝐻+

𝐶 0
𝐻+

𝜃

𝜃0
𝑒

‒
𝜂𝑠𝑙
2 ] + 𝜈0𝑉[ 𝜃𝜃0𝑒

𝜂𝑠𝑙
2 ‒

𝐶
𝐻+

𝐶 0
𝐻+

( 1 ‒ 𝜃

1 ‒ 𝜃0)𝑒
‒

𝜂𝑠𝑙
2 ] = 0

Defining the ratio of Tafel and Heyrovsky rates to the Volmer rate (rT=ν0T/ν0V, rH=ν0H/ ν0V) and y=θ/θ0 similarly to Wang et al. we 
get

(S9)

‒ 2𝑟𝑇[(1 ‒ 𝜃0𝑦)2
𝐶𝐻2

𝐶 0
𝐻2

‒ (1 ‒ 𝜃0)2𝑦2] ‒ 𝑟𝐻(1 ‒ 𝜃0)[(1 ‒ 𝜃0𝑦)
𝐶𝐻2

𝐶 0
𝐻2

𝑒

𝜂𝑠𝑙
2 ‒

𝐶
𝐻+

𝐶 0
𝐻+

(1 ‒ 𝜃0)𝑦𝑒
‒

𝜂𝑠𝑙
2 ] + (1 ‒ 𝜃0)2𝑦𝑒

𝜂𝑠𝑙
2 ‒ (1 ‒ 𝜃0)

(1 ‒ 𝜃0𝑦)
𝐶

𝐻+

𝐶 0
𝐻+

𝑒
‒

𝜂𝑠𝑙
2 = 0

This is then arranged to a quadratic equation that is solved for y=θ/θ0.

(S10a)𝐴𝑦2 + 𝐵𝑦+ 𝐶= 0

(S10b)
𝜃= 𝜃0𝑦= 𝜃0

‒ 𝐵+ 𝐵2 ‒ 4𝐴𝐶
2𝐴

The positive root is chosen, because it yields y=1 at η=0 (when Ci=Ci
0 for both protons and H2). The terms A, B and C are

(S10c)

𝐴= 2𝑟𝑇[(1 ‒ 𝜃0)2 ‒ (𝜃0)2
𝐶𝐻2

𝐶 0
𝐻2
]



        (S10d)

𝐵= 4𝑟𝑇𝜃
0
𝐶𝐻2

𝐶 0
𝐻2

+ 𝑒

𝜂𝑠𝑙
2 (1 ‒ 𝜃0)[(𝑟𝐻

𝐶𝐻2

𝐶 0
𝐻2

𝜃0 + 1 ‒ 𝜃0)] + 𝑒
‒

𝜂𝑠𝑙
2 (1 ‒ 𝜃0)

𝐶
𝐻+

𝐶 0
𝐻+

[𝑟𝐻(1 ‒ 𝜃0) + 𝜃0]

(S10e)

𝐶=‒ 2𝑟𝑇

𝐶𝐻2

𝐶 0
𝐻2

‒ 𝑟𝐻(1 ‒ 𝜃0)
𝐶𝐻2

𝐶 0
𝐻2

𝑒

𝜂𝑠𝑙
2 + (1 ‒ 𝜃0)

𝐶
𝐻+

𝐶 0
𝐻+

𝑒
‒

𝜂𝑠𝑙
2

We assumed Volmer-Tafel mechanism with Volmer as the rate limiting step as recent results indicate2,6. The rate of Heyrovsky 
reaction is assumed to be zero (rH = 0), and the exchange current density of Volmer reaction (i0V) 100 mA/cm2, based on the 
recent results of Durst et al.6. The ratio of Tafel and Volmer exchange rates (rT) is not known with certainty, but a range for the 
possible values can be estimated based on the kinetic limitations that Tafel-step imposes on the HER and HOR current densities. 
Only Tafel reaction produces H2, but in steady state its rate is equal to the rate of Volmer reaction. Therefore current density 
(Volmer rate) yields the correct H2 production rate, and it is sufficient to consider how Tafel rate affects the surface coverage (θ 
and rT).

Mass transport overpotential of HER on Pt

With negligible kinetic losses (i.e. exchange current density is high compared to current density on catalyst) the electrode 
potential is equal to the Nernst potential of the electrolyte at its surface. The Nernst potential of the hydrogen electrode is:

             (S11a)

𝑉= 𝑉0 +
𝑘𝐵𝑇

𝑞𝑒 [ln (𝐶𝐻+

𝐶 0
𝐻+ ) ‒

1
2
ln (𝐶𝐻2

𝐶 0
𝐻2
)]

The total mass transport losses of the system are determined by the Nernst potential and “electrostatic potential” Vl at Pt 
surface

             (S11b)

𝜂𝑀𝑇= 𝑉𝑙,𝑃𝑡+
𝑘𝐵𝑇

𝑞𝑒 [ln (𝐶𝐻+

𝐶 0
𝐻+ ) ‒

1
2
ln (𝐶𝐻2

𝐶 0
𝐻2
)]

The elementary charge is denoted with qe, Boltzmann constant with kB and temperature with T. The concentrations of protons 
and molecular hydrogen are cH+ and cH2, respectively. Superscript 0 denotes the equilibrium concentrations that correspond to 
the reference potential V0. Typically the activity of H2 is approximated with its partial pressure, but it appears that the species 
that reacts at the electrode is the individual H2 molecules dissolved in electrolyte, not H2 in gas bubbles2,9. Therefore we use the 
concentration of dissolved H2 instead of the partial pressure, when considering electrode kinetics. The equilibrium concentration 
of H2 is significantly smaller than the equilibrium concentration of protons, so H2 concentration will dominate the Nernst 
potential, as the changes in both concentrations at the electrode surface are quite similar (both due to HER/HOR and mass 
transport).
Henry’s law gives the equilibrium concentration of dissolved gases at low partial pressures, meaning that at low pressures the 
concentration of dissolved H2 depends linearly on the pressure of hydrogen outside water.

(S12)

𝑐 0
𝐻2
=

𝑝 0
𝐻2

𝑘𝐻,𝐻2

The literature value of the coefficient kH,H2 for H2 in water at 298.15 K (1282.05 atm/M ≈ 1299.0 bar/M 10) yields an equilibrium 
concentration of cH2

0 = 0.77 mM in 1 bar hydrogen pressure. The coefficient k depends on temperature, but we consider only a 
single temperature, T0=298.15K, so the temperature dependence does not affect simulations. 
When the effects of bubble formation on the H2 concentration can be neglected, the concentrations of protons and H2 on 
catalyst surface are

(S13a)

𝐶
𝐻+

𝐶 0
𝐻+

= 1 ‒
𝑖

𝑖
𝑙𝑖𝑚,𝐻+



(S13b)

𝐶𝐻2

𝐶 0
𝐻2

= 1 ‒
𝑖

𝑖𝑙𝑖𝑚,𝐻2 

Following the convention that for HOR i>0 and for HER i<0, it follows that ilim,H+<0 and ilim,H2>0. We simplify the potentials to a 
dimensionless overpotential η’ (which does not include potential Vl for simplicity, unlike overpotential in equation (S5a))

(S14)
𝜂' =

𝑞𝑒(𝑉 ‒ 𝑉0)
𝑘𝐵𝑇

Inserting the expressions for the overpotential and surface concentrations into Nernst potential and multiplying both sides by 2 
gives

(S15)

2𝜂' = 2ln [1 ‒
𝑖

𝑖
𝑙𝑖𝑚,𝐻+ ] ‒ ln [1 ‒

𝑖
𝑖𝑙𝑖𝑚,𝐻2 

]= ln [(1 ‒
𝑖

𝑖
𝑙𝑖𝑚,𝐻+ )2

1 ‒
𝑖

𝑖𝑙𝑖𝑚,𝐻2 
]

We then take the exponential of this and reorganize the resulting expression for a quadratic equation of current density

(S16)

𝑖2

𝑖
𝑙𝑖𝑚,𝐻+

2
+ 𝑖( 𝑒2𝜂

'

𝑖𝑙𝑖𝑚,𝐻2
‒

2
𝑖
𝑙𝑖𝑚,𝐻+ )+ 1 ‒ 𝑒2𝜂

'
= 0

Current density is solved by taking the positive root, because it corresponds to i=0 when η’=0.

(S17a)
𝑖=

‒ 𝐵+ 𝐵2 ‒ 4𝐴𝐶
2𝐴

(S17b)

𝐴=
1

𝑖 2
𝑙𝑖𝑚,𝐻+

(S17c)

𝐵=
𝑒2𝜂

'

𝑖𝑙𝑖𝑚,𝐻2
‒

2
𝑖
𝑙𝑖𝑚,𝐻+

(S17d)𝐶= 1 ‒ 𝑒2𝜂
'

When the current density is small compared to the limiting current density of HER, i.e. |i|<<|ilim,H+| and thus i/ilim,H+ → 0, 
equation (S16) can be simplified to

(S18)
𝑖 ≈ 𝑖𝑙𝑖𝑚,𝐻2(1 ‒ 𝑒 ‒ 2𝜂')
Note that this is very similar to the Tafel equation. This shows that, in this case, it is difficult to distinguish a situation where the 
current – overpotential data is dominated by the mass transport overpotential from a situation where it is dominated by the 
activation overpotential. In fact, equation (S18) predicts a Tafel-slope of 30 mV/decade Tafel-slope (from the mass transport 
overpotential). This value for the slope, if produced solely by the activation overpotential, could be possible in the case of the 
Volmer-Tafel reaction path with a comparably slow Tafel step as the RLS, but not with the other reaction paths dominating. The 
apparent exchange current density extrapolated from the IV curve then corresponds to the limiting current density of HOR, and 
not the true reaction kinetics7, a fact which is often not considered 2,6. In other words, the mass transport overpotential produces 
an IV-curve that is deceptively similar to a situation with comparatively slow kinetics and Tafel-reaction as the RLS3,6. This would 
explain the seeming discrepancy between very rapid reaction kinetics with Volmer as the RLS measured in high mass transport 
rate conditions and the numerous cases with much slower reaction kinetics with Tafel as the RLS3,6.
The mass transport overpotential is illustrated in Figure S1a with limiting current densities calculated for 100 μm diffusion layer 
thickness with =1M and  = 0.77 mM (corresponding to pH2=1 bar, diffusion coefficients and mobilities as in Table 1). 

𝑐 0
𝐻+ 𝑐 0

𝐻2



Proton transport (i/ ilim,H+ in equation (S16)) affects the solution noticeably only, when considering currents that are higher than 
~10% of the limiting current density (see Figure S1a, where ilim,H+ ≈ 1800 mA/cm2). The equilibrium concentration of protons in 
1M acid is more than thousand times as high as the concentration of dissolved H2, and thus |ilim,H+|>>|ilim,H2|, because the 
mobility of protons is also higher than that of H2 molecules. Therefore H2 transport dominates mass transport overpotential at all 
positive and low negative overpotentials. 
Figure S1b shows how the mass transport overpotential at 10 mA/cm2 current density depends on the electrolyte diffusion layer 
thickness. The typical exchange current density of about 1 mA/cm2 that can be interpreted as mass transport3,6 corresponds to 
about 75 µm diffusion layer thickness, and the typical overpotential of 30 – 40 mV for Pt electrodes used as a benchmark for 
other catalysts11 corresponds to about 65 – 160 µm thick diffusion layer (HOR limiting current density 0.47 – 1.17 mA/cm2). For 
the simulations we choose to use 100 µm thickness, because it corresponds to overpotential (~34 mV) and limiting current 
density (~0.76 mA/cm2) that are roughly at the middle of the aforementioned experimentally observed ranges.

  
Figure S1 a) The mass transport overpotential assuming a diffusion layer thickness of 100 µm: exact solution (black line, equation (S17)) and the approximate solution (red 
diamonds, equation (S18)). The dashed blue line is Butler-Volmer equation with αa=αc=2 (Tafel slope ≈ 30 mA/dec) and i0= ilim,H2. b) The overpotential required for 10 mA/cm2 
current density as a function of the diffusion layer thickness (exact solution (S17)).

Transport of ions and molecules in liquid

We simulate an aqueous electrolyte with 1M (= mol/l) bulk concentration of perchloric acid (HClO4). In addition to protons and 
perchlorate ions, molecular hydrogen (H2) is also dissolved into the liquid and its transport is driven by diffusion. The system is 
modeled using diffusion domain approach 12,13. The simulations are calculated in 2D cylindrical geometry with Comsol 
multiphysics (version 5.0) and the transport in liquid is solved with the Tertiary current distribution mode of Electrochemistry 
module.
The continuation equation for the species n in the liquid electrolyte is

(S19)

∂𝑐𝑛

∂𝑡
=‒ ∇ ∙ 𝑗𝑛+ 𝑅𝑛

The flux of species n is jn and Rn is its net generation rate. The flux depends on diffusion and electric field, as the liquid was 
assumed to be stagnant. 

(S20)
𝑗𝑛=‒ 𝐷𝑛∇𝑐𝑛 ‒ 𝑧𝑛𝜇𝑛𝑐𝑛∇𝑉𝑙=‒ 𝐷𝑛(∇𝑐𝑛 ‒

𝑧𝑛𝑞𝑒

𝑘𝐵𝑇
𝑐𝑛∇𝑉𝑙)

The concentration of the species in question is cn, its charge is zn and Dn and μn are its diffusion coefficient and mobility, 
respectively, and they are connected by Einstein relation (μn=qe/kBT·Dn). Electroneutrality is enforced everywhere in the 
electrolyte, meaning that CClO4-=CH+, because they are the only charged species in the system



(S21)
∑
𝑛

𝑧𝑛𝑐𝑛= 0

The gradient of potential Vl (equation (S5a)) corresponds to resistive losses and the different mobilities of protons and 
perchlorate ions14. The overall WE-CE bias is screened by the electrolyte and does not give rise to a net field beyond the outer 
Helmholtz plane (OHP), and although the potential gradient caused by the mobility difference and resistive losses appears similar 
to an electric field (E=-Vl), it corresponds to the effects of coulombic attraction (electroneutrality) on ion transport

(S22)

∇𝑉𝑙=‒
𝑘𝐵𝑇

𝑞𝑒 [(𝐷𝐻+ ‒ 𝐷
𝐶𝑙𝑂 ‒

4

𝐷
𝐻+ + 𝐷

𝐶𝑙𝑂 ‒
4
)∇(ln 𝑐

𝐻+

𝑐 0
𝐻+ ) ‒

𝑖

𝑞𝑒𝑁𝐴𝑐(𝐷𝐻+ + 𝐷
𝐶𝑙𝑂 ‒

4
)]

The term ∇(ln(c/c0)) is typically marked without c0 (i.e. as ∇(ln(c))), as the reference concentration will cancel itself, when the 
expression is simplified to (∇c)/c. At the boundary of bulk electrolyte Vl=0 and all concentrations are fixed (i.e. perfect stirring 
beyond the boundary layer). The flux through the other boundaries is set to be zero.
Although Vl includes ohmic losses in electrolyte, in the studied current density range they were at most 0.6 mV (25 mA/cm2 and 
100 µm diffusion layer thickness, calculated by deducting the concentration dependent component from Vl at Pt surface) and 
corresponded very accurately to the bulk conductivity of the electrolyte (41.7 S/m based on values in Table 1, comparison not 
shown). Therefore their inclusion in simulation results has only a negligible effect.
The total current density in the electrolyte is the sum of the ion fluxes

(S23)
𝑖𝑙= 𝐹∑

𝑛

𝑧𝑛𝑗𝑛

HER/HOR on Pt is the current source for the mass transport in electrolyte and protons are the only ion that participates in the 
reaction.

(S24)
∇ ∙ 𝑖𝑙= 𝐹∑

𝑛

𝑧𝑛𝑅𝑛

Depending upon whether the species of interest is protons or H2 the reaction will be either a source or a sink

(S25a)
𝑅

𝐻+ ,𝑃𝑡
=

𝑖𝑉
𝑞𝑒𝑁𝐴

(S25b)
𝑅𝐻2,𝑃𝑡= ‒ 𝜈𝑇=

‒ 𝑖𝑉
2𝑞𝑒𝑁𝐴

The electrode (TiO2 and Pt) is treated as a resistive material with a finite conductivity

(S26a)∇ ∙ 𝑖𝑠= 𝑄𝑠

(S26b)𝑖𝑠=‒ 𝜎𝑠∇𝑉𝑠

HER/HOR is the only current source (Qs) in the electrode or its boundaries, so Qs=0 everywhere, except at the exposed Pt 
surface. At the “bottom” of the TiO2 (z=-100nm) potential Vs is fixed to a set potential (vs RHE in bulk electrolyte), which is the 
total overpotential that we use (see equation (S5b) and e.g. Figures 4 and 5).

Simulation details; Validation of the geometrical considerations

A Pt loading of 10 ng/cm2 corresponds to a center-to-center distance of about 134 nm and 1000 ng/cm2 to about 13.4 nm 
distance (Figure 1). At loadings higher than 1000 ng/cm2 the average distance between the edges of nearest neighbors is thus 
less than 8 nm, i.e. comparable to the particle size, meaning that the geometric effects and variations in cluster placement may 
begin to affect mass transport and therefore the cylindrical approximation may become inaccurate at higher Pt loadings. 
Depending on the placement geometry of the nanoparticles on the electrode surface, the true average distance between nearest 
neighbors at a given Pt loading may be smaller than equation (1) predicts, but the difference is not likely significant. For instance, 
in the case of square array the distance would be about 11% smaller than our approximation.
According to equation (1) Pt loading of 7150 ng/cm2 corresponds to a surface fully covered with the particles (Rcell=rPt), although 
in reality a lower loading likely suffices for this, because the cylindrical approximation overestimates the average distance. In the 



simulated geometry the Pt surface area per mass is about 53 m2/g (or 5.3×10-4 cm2/ng), when the loading is low enough that the 
particles are separate from each other. With about 1880 ng/cm2 of Pt the exposed Pt surface area would then be equal to the 
geometrical area of the electrode, and a smooth 1 nm thick Pt layer contains 2145 ng/cm2 of Pt.



Results
Characterization of size-selected Pt nanoparticles 

Figure S2. XPS survey spectra measured on the planar photocathodes having different deposited Pt loadings.

The deposited samples were checked with XPS for contaminations. Figure S2 shows representative survey spectra measured on 
samples previously deposited each of the deposited loadings. No unexpected contaminants were detected on the surface of the 
samples.
Figure S3 shows overview TEM images of the particles on lacey carbon covered Cu TEM grids. The narrow size-distribution (see 
Figure 2A) can be seen. The chance of particles landing on top of each other is even less in case of the TiO2 covered Si samples, as 
the deposited surface coverage in case of those samples is expected to be less than on the TEM grids, except the highest loading 
(1000 ng/cm2) where it is around 3 times higher.

Figure S3. Overview TEM images of the deposited particles.

The effect of exchange rate of Tafel step

The overall effect of increasing or decreasing the exchange rate of Tafel step can be summarized based on equations (S4) – (S6): 
In steady state the coverage does not change over time, so the reaction rate of Tafel step must corresponds to the current 
density. Decreasing the exchange rate therefore increases the coverage required to maintain a given HER current density. There 



are then less free adsorption sites available, leading to higher overpotentials. Ultimately, the highest HER current density that 
Tafel step allows is limited by the exchange rate and equilibrium coverage

(S27)
𝑖𝑇,𝐻𝐸𝑅,𝑚𝑎𝑥=‒

2𝑟𝑇𝑖0,𝑉

(𝜃0)2

With exchange current density i0,V=100 mA/cm2 and equilibrium coverage θ0=0.67 8 the lowest value of rT that allows the 
measured current density of about 22 mA/cm2 with 10 ng/cm2 loading (about 4.1 A/cm2 per Pt area) is 9.3. Because initially this 
was the only criterion for the value of rT, we analysed, how it affects the overpotential and match with experiments with 10 
ng/cm2. 
Figure S4 shows how increasing rT from 1 to 13 affects the overpotential. At low overpotentials it is difficult to distinguish the IV-
curves from each other, but the differences become apparent, when overpotential is increased and values rT≤9 limit the HER 
current density to below the measured photocurrent, so they clearly do not correspond to the true kinetics. Based on how rT 
values 9.5 and 10 fit the measured curve, it seems that the best fit to experiments corresponds to the HER kinetic limitation 
being slightly higher than or equal to the photocurrent. We choose to use rT=9.5, because it approximately corresponds to this 
limitation (about -4.2 A/cm2 per Pt area, or with 10 ng/cm2 loading about -22.5 mA/cm2 per electrode area).
The choice of the equilibrium coverage and especially Tafel rate are somewhat uncertain and the used values might not 
correspond to the actual reaction kinetics, especially if in reality Heyrovsky step contributes significantly to current density. 
Because the best fit to experiments seems to correspond to HER limiting current density being just a little higher than the 
photocurrent, quite likely several other (θ0, rT) combinations that produce the same current density limitation yield an equally 
good fit. For example, the parameters calculated by Wang et al.5 (5% equilibrium coverage and 0.043< rT<0.055) correspond to 
18.3 – 23.4 mA/cm2, and especially rT=0.055 produces a good fit to measured IV-curve (not shown), but contradicts results that 
indicate Volmer as the RLS2,6.

Figure S4 The effect of the exchange rate of Tafel step (rT) on the HER overpotential with 10 ng/cm2 Pt loading.

The Effect of mass transport rate on the total overpotential

As explained before, we initially chose 100 µm diffusion layer thickness for the simulations. With 0.77 mM H2 concentration this 
corresponds to HOR limiting current density of about 0.76 mA/cm2. This led to overestimated overpotentials at low current 
densities with the highest loadings (200 ng/cm2 and 1000 ng/cm2). When the total overpotential was plotted similarly to Figure 5 
(not shown), the results indicated that at high loadings (and especially at current densities less than 20 mA/cm2) the total 
overpotential ηtotal was almost equal to the mass transport overpotential ηMT. To determine what diffusion layer thickness would 
match the experimental results we analysed its effects on the total overpotential with 1000 ng/cm2 loading that was the most 
sensitive to mass transport conditions due to the lowest kinetic losses.
Figure S5 below shows the simulated overpotentials for diffusion layer thicknesses ranging from 2.5 µm (30.4 mA/cm2) to 100 
µm (0.76 mA/cm2). Overall, 5.0 µm thickness (15.2 mA/cm2) seems to be the best match to the measured IV curve, although all 
thicknesses from 2.5 µm to 10.0 µm (7.6 mA/cm2) are close to measured IV curve and more detailed analysis could yield slightly 



different diffusion layer thickness and a bit better fit to measured IV-curve. However, the difference between 2.5 µm and 5.0 µm 
thicknesses at 20 mA/cm2 current density is about 5 mV (which is also the difference between 5.0 µm and 10.0 µm), so further 
optimization will not significantly improve the fit. The assumptions and inaccuracies associated with the IV curve of the ideal PV 
cell could well correspond to a larger error than the aforementioned 5 mV difference. Therefore the actual mass transport rate 
cannot be determined accurately, but is likely in the range of about 7.5 - 30 mA/cm2 HOR limiting current density. Overall, 
explaining the low overpotentials with 1000 ng/cm2 requires very high mass transport rates: even 7.6 mA/cm2 limiting current 
density (10 µm diffusion layer thickness) is so high that under 1 bar H2 pressure it may be impossible to achieve even with a RDE, 
so these conditions seem unlikely in stirred electrolyte. 
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Figure S5 The simulated overpotentials (dashed lines) for 1000 ng/cm2 with HOR limiting current densities ranging from 0.76 mA/cm2 (100 µm thick diffusion layer) to about 30.4 
mA/cm2 (2.5 µm) compared to measured IV-curve (solid black line).

The measured IV-curve being explained by very high mass transport rate is most likely related to the potential sweep, because 
the measurements and simulations correspond to different situations in the sense that the measurements are carried out as a 
CV potential sweep, whereas the simulations were calculated until steady state was achieved. High sweep rate probes mass 
transport only comparatively close to the electrode surface, and thus the mass transport losses may correspond to a relatively 
thin diffusion layer (compared to the steady-state characteristics of simulations). 
Importantly to HER on Pt, the sweep rates and exchange current densities with ~30 mV/decade Tafel-slope in literature seem to 
correlate with each other, with lowest sweep rates yielding lowest exchange current densities (see Figure S6).15–20 In all the 
referred cases the aim was to measure the steady state operation of the studied catalysts and Pt electrode, so they are 
representative of typical measurement methods and their biases. The sample size of five studies is not very large, so the result 
could be a coincidence and a larger literature review and/or experimental study would be required to assess the situation more 
accurately. However, the exact determination of the effect of the sweep rate is beyond the scope of this article.
Despite Figure S6 suggesting that our scanning rate (50 mV/s) is unusually high compared to literature, this is not the case. 
Scanning rates up to at least 40 mV/s21 have been used, but our analysis is limited to cases, where information about mass 
transport conditions was readily available. This likely creates a bias to comparatively low sweep rates, because, as Figure S6 
suggests, mass transport losses could be too small to notice or determine accurately with sweep rates much higher than 10 
mV/s.

Figure S6 Literature data about HOR limiting current density/apparent HER exchange current density as a function of the sweep rate. This article is marked with black diamond.



Journal Name  ARTICLE

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 13

Please do not adjust margins

Please do not adjust margins

Effect of exchange current density on HER overpotential

As Figure 5 shows, the overpotential of 10 ng/cm2 loading reflects the reaction kinetics most accurately. Therefore we used it 
study the effect of exchange current of Volmer step (i0V) on the simulated overpotential. Because we already established that the 
best fit to experiments appears to correspond to the kinetic limit of HER being approximately equal to the photocurrent with 10 
ng/cm2, we also vary the value of rT with the exchange current density to match this criterion, i.e. rT×i0V =950 mA/cm2. In 
accordance with the mass transport analysis, we use diffusion layer thickness 5 µm as a difference to Figure S4.
The effect of exchange current density is illustrated in Figure S7 below. Reducing it from 100 mA/cm2 to 90 mA/cm2 could 
improve the match a little, but not significantly, so we continue to use 100 mA/cm2 (and rT = 9.5). 

Figure S7 The effect of exchange current density on HER overpotential with 10 ng/cm2 Pt loading. Solid black line corresponds to measured IV-curve and grey to ideal PV (n=1)

The effect of particle size on overpotentials

In Figure S8 the effect of particle size is illustrated with three different sizes (d=2nm, 5nm and 10nm, different markers) and two 
current densities (10 and 20 mA/cm2, color of the markers). As shown in Figure 5 in the main text, mass transport losses are 
almost same for all loadings, so the differences in overpotentials are due to reaction kinetics: Smaller particles have more 
surface area per mass and so, for a given loading and current density per electrode area, the current density per Pt surface area 
is smaller. Consequently, the overpotential is reduced. With the selected particle sizes there are clear differences, and the 
overpotential with 2 nm particles at 20 mA/cm2 is approximately equal to the overpotential for 10 mA/cm2 with 5 nm particles. 
Similarly, the overpotential for 5 nm particles and 20 mA/cm2 current density is approximately equal to the overpotential with 10 
nm particles at 10 mA/cm2 current density. This suggests that Pt consumption could be reduced and the electrode performance 
improved from our experimental results with smaller particles, if the reduced size does not cause problems.
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Figure S8 The effect of particle size on the overpotential for different Pt loadings.
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