Electronic Supplementary Information for

Nonaqueous Redox-Flow Batteries: Organic Solvents, Supporting Electrolytes, and Redox Pairs

Ke Gong,^a Qianrong Fang^a, Shuang Gu,^{a,*} Sam Fong Yau Li,^b and Yushan Yan^{a,*}

^a Department of Chemical & Biomolecular Engineering, Center for Catalytic Science and Technology, University of Delaware, Newark, DE 19716, USA.

^b Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.

Correspondence and requests for materials should be addressed to S.G. (email: shgu@udel.edu) or to Y.S.Y. (email: yanys@udel.edu)

1. Materials and methods

1.1. Cyclic voltammetry (CV)

Cyclic voltammetry (CV) was conducted in a 25 mL three-neck flask equipped with three electrodes under inert atmosphere. Before CV measurement, the nonaqueous electrolyte was prepared by the following procedure. Firstly, 0.01 mol redox compound (biphenyl, BP; or octafluoronaphthalene, OFN), 0.01 mol supporting electrolyte (tetrabutyl ammonium, Bu₄NClO₄), and 2.5 g alumina power (desiccant) were added into the flask, then the flask was repeatedly charged with nitrogen and degassed for three times; and at last, a 10 mL anhydrous organic solvent (N,N-dimethylformamide, DMF, for BP; or propylene carbonate, PC, for OFN) was injected into the flask to dissolve the redox compound and supporting electrolyte. A micro-platinum disk electrode (0.2 mm in diameter) was used as working electrode, and a platinum wire (0.5 mm in diameter) and a silver wire (1 mm in diameter) were used as counter electrode and reference electrode, respectively. CV test was carried out by a Solartron Analytical 1287 Electrochemical Interface coupled with a Solartron 1260A Impedance/Gain-Phase Analyzer. The cell resistance was measured by AC impedance method and all CV curves were IR-corrected.

1.2. Measurement of diffusion coefficient (*D*)

The diffusion coefficient of BP in DMF was obtained by using the Randles-Sevcik equation for reversible systems.¹ Specially, the relationship between the cathodic peak current density, $i_{p,c}$, and the diffusion coefficient of BP, D_0 , is as follows:

$$i_{\rm p,c} = (2.69 \times 10^5) n^{3/2} \cdot D_{\rm O}^{1/2} \cdot C_{\rm O}^* \cdot v^{1/2}$$
 Eq. S1

where, $i_{p,c}$ is the cathodic peak current density in A cm⁻², D_0 is the diffusion coefficient of oxidative specie (BP) in cm² s⁻¹, C_0^* is the bulk concentration of oxidative specie (BP) in mol cm⁻³, v is scan rate in V s⁻¹.

Similarly, the diffusion coefficient of ONF in PC was obtained. Specially, the relationship between the anodic peak current density, $i_{p,a}$, and the diffusion coefficient of OFN, D_R , is as follows:

$$i_{\rm p,a} = (2.69 \times 10^5) n^{3/2} \cdot D_{\rm R}^{1/2} \cdot C_{\rm R}^* \cdot v^{1/2}$$
 Eq. S2

where, $i_{p,a}$ is the anodic peak current density in A cm⁻², D_R is the diffusion coefficient of reductive specie (OFN) in cm² s⁻¹, C_R^* is the bulk concentration of reductive specie (OFN) in mol cm⁻³, v is scan rate in V s⁻¹.

1.3. Estimate of standard rate constant (k_0)

The standard rate constant, k_0 , was obtained by using the Nicolson method.² For a cathodic CV process (like the CV of BP), the relationship between the standard rate constant and the Nicolson dimensionless number (Ψ) is given by the **Eq. S3**:

$$k_{0} = \left[\frac{(\pi \cdot D_{0} \cdot f \cdot v)^{1/2}}{(D_{0} / D_{R})^{\alpha/2}}\right] \cdot \psi$$
 Eq. S3

where, k_0 is the standard rate constant in cm s⁻¹; π is the mathematical constant; Ψ is the Nicolson dimensionless number, which is a function of the peak potential separation (ΔE_p) from CV curve. Note that the value of Ψ is obtained from the **Figure 3** in the Nicolson's classic paper;² D_0 is the diffusion coefficient of oxidative specie (e.g., BP) and D_R is the diffusion coefficient of reductive specie (e.g., BP•⁻), both in cm² s⁻¹; and ν is scan rate in V s⁻¹; α is the charge transfer coefficient, dimensionless; and $f = (n \cdot F)/(R \cdot T)$, in which n is the number of electrons transferred in redox reaction, F is the Faraday constant (96485 C mol⁻¹), R is the ideal gas constant (8.314 J mol K⁻¹), T is the absolute temperature in K.

Note that the measurement of the diffusion coefficient of BP^{-} is rather complicated, and it is beyond the scope of this work. Well, it can be assumed that the diffusion coefficient of BP^{-} is reasonably close to that of BP, since they have the same molecular weight. Then the **Eq. S3** can be further simplified as follows:

$$k_0 = (\pi \cdot D_0 \cdot f \cdot v)^{1/2} \cdot \psi$$
 Eq. S4

where, k_0 is the standard rate constant in cm s⁻¹; π is the mathematical constant; D_0 is the diffusion coefficient of BP; v is scan rate in V s⁻¹; $f = (n \cdot F)/(R \cdot T)$; and Ψ is the Nicolson dimensionless number.

The k_0 results of the BP/BP⁻⁻ redox pair are listed in the **Table S1**.

For an anodic CV process (like the CV of OFN), the relationship between the standard rate constant and the Nicolson dimensionless number (Ψ) is given by the **Eq. S5**:

$$k_0 = \left[\frac{(\pi \cdot D_{\rm R} \cdot f \cdot v)^{1/2}}{(D_{\rm R} / D_{\rm O})^{\alpha/2}}\right] \cdot \psi$$
 Eq. S5

where, k_0 is the standard rate constant in cm s⁻¹; π is the mathematical constant; Ψ is the Nicolson dimensionless number; D_R is the diffusion coefficient of reductive specie (e.g., OFN) and D_O is the diffusion coefficient of oxidative specie (e.g., OFN•⁺), both in cm² s⁻¹; and v is scan rate in V s⁻¹; α is the charge transfer coefficient, dimensionless; and $f = (n \cdot F)/(R \cdot T)$, in which n is the number of electrons transferred in redox reaction, F is the Faraday constant (96485 C mol⁻¹), R is the ideal gas constant (8.314 J mol K⁻¹), T is the absolute temperature in K.

Similarly, by assuming the diffusion coefficient of OFN•⁺ is reasonably close to that of OFN, the **Eq. S5** can be simplified as follows:

$$k_0 = (\pi \cdot D_{\mathsf{R}} \cdot f \cdot v)^{1/2} \cdot \psi$$
 Eq. S6

where, k_0 is the standard rate constant in cm s⁻¹; π is the mathematical constant; D_R is the diffusion coefficient of OFN; v is scan rate in V s⁻¹; $f = (n \cdot F)/(R \cdot T)$; and Ψ is the Nicolson dimensionless number.

The k_0 results of the OFN•⁺/OFN redox pair are listed in the **Table S2**.

2. Tables

v[a]	Δ <i>E</i> _[b]	\U [c]		Average k	Standard deviation
(mV s ⁻¹)	(mV)	(dimensionless)	$(\times 10^{-3} \text{ cm s}^{-1})$	$(\mathrm{cm} \ \mathrm{s}^{-1})$	$(\mathrm{cm}\ \mathrm{s}^{-1})$
25	90	0.809	4.71	4.8 × 10 ⁻³	0.4 × 10 ⁻³
36	94	0.711	4.97		
49	96	0.665	5.43		
64	108	0.473	4.41		
81	114	0.421	4.41		
100	115	0.405	4.72		
F 1					

Table S1. Calculation of k_0 for the BP/BP^{•–} redox pair

[a] v: scan rate.

[b] $\Delta E_{\rm p}$: peak potential separation in CV curve.

[c] Ψ : Nicholson dimensionless number. The value was obtained from the Figure 3 in the Nicolson's classic paper.²

[d] k_0 : standard rate constant of the BP/BP^{•-} redox pair.

v	$\Delta E_{\rm p}$	Ψ	k_0	Average k ₀	Standard deviation
(mV s ⁻¹)	(mV)	(dimensionless)	$(\times 10^{-3} \text{ cm s}^{-1})$	(cm s ⁻¹)	(cm s ⁻¹)
400	98	0.632	0.97	1.7 × 10 ⁻³	0.4×10^{-3}
900	98	0.628	1.44		
1600	99	0.622	1.90		
2,500	104	0.521	1.99		
3,000	108	0.476	1.99		
3,600	111	0.446	2.05		

Table S2. Calculation of k_0 for the OFN•⁺/OFN redox pair

[a] v: scan rate.

[b] $\Delta E_{\rm p}$: peak potential separation in CV curve.

[c] Ψ : Nicholson dimensionless number. The value was obtained from the Figure 3 in the Nicolson's classic paper.²

[d] k_0 : standard rate constant of the OFN•⁺/OFN redox pair.

3. Figures

Figure S1. ¹H NMR spectra of BP solution in DMF with different apparent concentrations of added BP (CDCl₃ as NMR solvent). The detected BP concentration can be calculated by comparing the BP peak areas and DMF peak areas.

Figure S2. ¹³C NMR spectra of OFN solution in PC with different apparent concentrations of added OFN (CDCl₃ as NMR solvent). The detected OFN concentration can be calculated by comparing the OFN peak areas and PC peak areas. Note: ¹H NMR spectroscopy is not appropriate for OFN, because the absence of protons in OFN molecule.

4. References

- L. R. F. Allen J. Bard, *Electrochemical Methods: Fundamentals and Applications*, 2000.
 R. S. Nicholson, *Anal. Chem.*, 1965, **37**, 1351-1355.