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      Table S1 Physical property of selected thermoelectric materials. 

(ZT)max m* U* κlat Eg B*Short name Composition

[/] [m0] [m K-3/2 s-1 V-1] [W m-1 K-1] [eV] [/]

Ref.

Mg2Sn Mg2Sn0.99Sb0.01 0.65, 350 oC 2.04 130.28 2.55 0.250 0.85 c)

Mg2Sn0.75Ge0.25 Mg2Sn0.73Ge0.25Sb0.02 1.4, 450 oC 3.5 162.84 1.26 0.318 2.73 c)

CoSbTe CoSb2.85Te0.15 0.9, 550 oC - a)  98.73 1.94 b) 0.275 0.93 43

CoSbTeSn CoSb2.75Te0.20Sn0.05 1.1, 550 oC - a)  88.33 1.05 b) 0.274 1.54 47

Ingot-BiSbTe n.a. 1.4, 50 oC - a) 207.13 0.88 b) 0.168 2.64 48

Nano-BiSbTe n.a. 1.05, 100 oC - a) 194.06 0.52 b) 0.184 4.58 48

Nano-BiTeSe as-pressed
Cu0.01Bi2Te2.7Se0.3

0.9, 100 oC 0.97
121.62 0.68 b) 0.11 1.31

49

PbTe-1 Tl0.02Pb0.98TeSi0.02Na0.0

2

1.7, 500 oC -

a) 60.15 0.50 b) 0.44

3.53 50

PbTe-2 PbTe: 6% MgTe 2, 550 oC 7 56.00 0.54 b) 0.6 4.15 51

FeNbSb FeNb0.8Ti0.2Sb 1.1, 827 oC 1.2 144.35 2.5 0.54 2.08 52

Note: a) estimated from measured σ and S according to the Ref. [Chem. Mater. 2008, 20, 7526-7531.] , and hence no carrier effective 
mass m* available; b) estimated from Eg = 2eSmaxT; c) this study.   
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Fig. 1S. Carrier concentration as a function of Sb content and Ge content for sample Mg2Sn1-x-yGexSby. It is clearly shown 
that the carrier concentration varies with Sb rather than Ge in Mg2Sn1-x-yGexSby. 



Fig. 2S. Temperature dependent diffusivity and specific heat of Mg2Sn1-x-yGexSby. (a) Thermal diffusivity, (b) specific heat. 



Fig. S3. Reproducibility of thermoelectric properties of Mg2Sn0.75-yGe0.25Sby. (a-e) Samples of Mg2Sn0.73Ge0.25Sb0.02 with 
carrier concentration of 2.7×1020 cm-3, and (f-j) samples of Mg2Sn0.728Ge0.25Sb0.022 with carrier concentration of 3.0×1020 
cm-3.  



Fig. S4. Optimized ZT regarding with Fermi energy as a function of reduced band gap for the traditional material 
parameter B = 0.2 (bottom curve), 0.4, 0.6, and 0.8 (top curve) for the assumption of s = -1/2,  ξf  = 0, Ue  = Uh and T = 
300K. This shows the effect of band gap using the traditional material parameter B and is consistent with Mahan’s 
previous work [J. Appl. Phys., 1989, 65, 1578-1583.]  

Fig. S5. (a) Reflectance spectrum of Mg2Sn1-x-yGexSby, (b) absorption spectra of Mg2Sn1-x-yGexSby where the across point 
of the dash line with hv axis was used to determine the band gap. 



A. Expression of ZT by using Fermi–Dirac statistics in a two-band model

We consider two simple band, i.e. one parabolic conduction band and one parabolic valence band. By applying Simon’s 
theory [J. Appl. Phys. 33, 1830 (1962)] the electrical conductivity σ, Seebeck coefficient S, and thermal conductivity κ 
could expressed by the contribution of both bands as following, 
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where the subscript e and h represent the conduction band and valence band, respectively.  Furthermore, the σi and Si could 
be expressed by using Fermi–Dirac statistics, 
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By introducing a new parameter γ = σe/ σh for simplification and the relationships of ξf_e = ξf and ξf_h = -ξf -ξg, the definition 
of ZT, i.e., ZT = S2σT/κ, could turns into following 
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Eq. (9S-10S) is just the exactly form we used in main text.  



B. Calculation of m* from Hall coefficient and Seebeck coefficient. 
         The carrier effective mass m* was derived from the carrier density relationship with Fermi Dirac integral, 
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Here, ξf was calculated from the measured Seebeck coefficient (S) with acoustic phonon scattering as dominant scattering 
mechanism, i.e., s = -1/2. 
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The carrier concentration n was calculated from measured Hall coefficient (RH) and Hall factor rH,
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C. Calculation of Lattice and bipolar thermal conductivity

Owing to the intrinsic excitation, the contribution of bipolar effect to the contribution of thermal conductivity 
needs to be taken into account to explain the widely observed raising tail of thermal conductivity at high temperature for 
most thermoelectric materials. The total thermal conductivity is composed of three parts as following, 
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where the κtot, κlat, κcarr, and κbipolar are the total, lattice, carrier, and bipolar thermal conductivity, respectively. The Lorenz 
number L is Fermi energy related parameter, 
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Here, the s is the scattering parameter based on the relaxation time approximation for the electronic transport. For 
acoustic phonon dominant scattering mechanism, s is -1/2.  The reduced Fermi energy ξf  near room temperature could be 
estimated from the Seebeck coefficient on the basis of single band approximation formula Eq. (13S). The reduced Fermi 
energy ξf (T) at the higher temperature is required to solve the generalized charge neutrality equations (Eq. (20S-22S)) at a 
given temperature 
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For the estimation of the κbipolar according to Eq. (18S), we need estimated Se, Sh, σe and σh. We can get Se and Sh from Eq. 
(13S) by using the estimated ξf (T), respectively. The estimation of σe and σh are based on the calculated carrier 
concentration and the fitting carrier mobility. m*e was obtained from the measured carrier concentration and Seebeck 
coefficient of Mg2Sn1-x-yGexSby in this study, while m*h = 1.3 m0 was used according to the Ref. [V. K. Zaitsev, CRC Press, 
New York, 2005]. μe was estimated from (σe +σh)/(e(n+p)), while uh was used to fitting the temperature dependent  σ and S. 
The temperature coefficient of the band gap of Mg2Sn1-x-yGexSby were estimated from interpolation between the reported 
value for Mg2Sn (dEg/dT = 3×10-4eV/K ) and Mg2Ge (dEg/dT = 1.8×10-4eV/K) from Ref. [V. K. Zaitsev, CRC Press, New 
York, 2005]. The effect of the dopant Sb and extra Mg on the dEg/dT was neglected.   



D. Calculation of band gap from the Fourier transform infrared spectrum 

The Fourier transform infrared spectrums of selected samples were measured to derive the optical band gap. For 
near-normal incidence, the complex refractive index n(ω) and the extinction coefficient k(ω) with both the real and 
imaginary parts can be obtained from the Krameres-Kronig analysis as following,
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where  is the phase shift, which is, Θ(𝜔)
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The extinction coefficient k(ω) is used to calculate the frequency dependent absorption coefficient α(ω) through the relation, 
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Finally, the (αhν)1/2 was plotted as a funcation of the energy hν, as shown in Fig. S7.  The across point of the dash line with 
hv axis was used to determine the band gap

E.  Connections among the components of  B*
      
It is worthy pointing out that the components (U*, Eg, and κlat) determining the material parameter B* are still 
interconnected with each other from a more fundamental point of view. Here, we show a simple discussion about the 
deeper relation between U* and Eg.  Firstly,  Let us to recall the defination of U* in the main body , 
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Then, we replace the carrier effective mass term (m*)3/2 in the defination of U* with Nv(mb
*)3/2 where mb

* and Nv are the 
band effective mass mb

* and the number of degenerate band valley Nv , respectively.
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Considering the acoustic phonon as dominant carrier scattering mechanism for most thermoelectric materials, μ in Eq. (S28) 
could be further evolved using the deformation potential Ed, elastic constant Cl (Similar treatment could be found in Ref. 9.), 
and then Eq. (S27) turns into, 
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According to Eq. S29, a larger Nv and smaller mb
* are favorable for higher U*. Now the material parameter B* could be 

rewritten as, 
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Based on the k·p perturbation theory, mb
* is related to Eg, conduction band wave function Γc, and valance band wave 

function Γc.  

                                                                                                                                              (S31)
2

* 2 2
0 0

21 1 c v

b g

k p

m m m k E

  
 

This relation essentially describes the fact that the effective mass of a free electron in one band changes due to the coupling 
to the electrons in other bands. For non-degenerate conduction band electrons, it has been shown that a material with larger 
Eg usually has a heavier mb

* that corresponds to a lower mobility, according to Ref. 55. According to the data for typical V 
(Ge), III-V (GaN, GaAs, GaSb, InP, InP and InAs), II-VI (ZnS, SnSe, ZnTe, CdTe) semiconductor, the ratio of Eg/(mb

*/m0) 
decreases with increase of band gap. This simplified picture partly explains why most of the well-known thermoelectric 
materials are narrow band semiconductor. However we want to caution that for thermoelectric materials where heavy 
atoms are usually involved, spin-orbit coupling needs to be considered and the above formalism needs to be carefully 
examined with more details. Additionally, the controllable doping for many semiconductors with wide band-gap are still a 
technical challenge which also prevents people from more widely investigating their thermoelectric performance.  Further 
explorations into the relation among the parameters in generalized material parameter B*, described in Eq. S28, would be 
more insightful to guide the researcher to atomically construct ideal materials with optimized atomic sizes, bonding 
strengths, and crystalline structures.   

F. Estimated U* from measured S and σ
For the samples without data from Hall measurement in the Table S1, including CoSbTe, CoSbTeSn, ingot-BiSbTe, nano-
BiSbTe, and PbTe-1, U*s were estimated from the measured Seebeck coefficient S and electrical conductivity σ at room 
temperature as following, 

                                                                                                                              (S32)
5
2

B
fS s

e
          

                                                        (S33)     
3/ 2

3/ 2* *0
02

22 / exp expB
f f

m k Te m m A U
h

       
 

Here, A is a constant for simplification, 
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The error bar for U* by using this method should be similar to that of the term , which has been discussed  3/ 2*
0/m m

in Chem. Mater. 2008, 20, 7526-7531.  


