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The calculation of H2 amount produced in the reactor: 

Since the H2 concentration in the 0.2 mL sample gas is usually assumed to be the same 

to that in the head space of the reactor, the total amount of H2 produced in the reactor 

can be calculated by Equation (1):   

H2 amount in the reactor [mol] =

                
H2 amount in the 0.2 ml sample gas [mol] ×

head space volume in the reactor [ml]
0.2 [ml]

(1)
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Table S1 Physicochemical properties and QE of CN-B, CN-S, PCN-B and PCN-S 

Table S2 Kinetic analysis of emission decay for CN-B, CN-S, PCN-B and PCN-S

Samples 1(ns) Rel (%) 2 (ns) Rel (%) (ns) 2

CN-B 2.885 67.15 15.966 32.85 7.18 1.043

CN-S 3.325 65.10 21.232 34.90 9.58 1.049

PCN-B 3.460 64.10 20.267 35.90 9.49 1.105

PCN-S 3.927 67.60 19.988 32.40 9.13 1.099

Table S3 Parameters of equivalent circuit for the impedance data of CN-B, CN-S, PCN-B 

and PCN-S

Samples Rt (Ω) Rs (Ω)

Samples SBET (m2 g-1) PVa (cm3 g-1) Eg
b (eV) QE at 420 nm (%)

CN-B 5.6 0.03 2.78 0.59

CN-S 84.2 0.23 2.94 2.60

PCN-B 8.3 0.04 2.68 1.50

PCN-S 122.6 0.27 2.91 3.56
a PV: Pore volume, b Eg: Band gap.
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Fig. S1 Comparison of the photocatalytic activities of CN-B, 1/70-PCN-B, PCN-B, 1/40-

PCN-B, 1/30-PCN-B and 1/20-PCN-B for the H2 production using 20 v% TEOA aqueous 

solution as a sacrificial reagent under visible-light irradiation (≥ 400 nm, 300 W Xe lamp).

In order to determine the optimal doping content of P in g-C3N4 for photocatalytic H2 

production, a series of bulk P-doped g-C3N4, i.e. 1/70-PCN-B, 1/40-PCN-B, 1/30-PCN-B 

and 1/20-PCN-B were synthesized, following the same procedure as that of PCN-B 

except that the mass ratio of 2-aminoethylphosphonic acid (AEP):melamine (ME) was 

changed to 1/70, 1/40, 1/30 and 1/20, respectively. Then the effect of mass ratio 

(AEP:ME) on the photocatalytic H2-production activity was investigated. As shown in Fig. 
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S1, the doping of P in g-C3N4 improves the photocatalytic activity towards H2 production.    

The photocatalytic H2-production activity is gradually enhanced as the mass ratio 

increased and the highest photocatalytic H2-production activity of 510 mol h-1 g-1 is 

achieved at the mass ratio of 1/60 (PCN-B). However, further increasing the mass ratio 

leads to the reduction of photocatalytic H2-production activity. Surprisingly, when the 

mass ratio reaches 1/20, a very low photocatalytic H2-production activity of 16 mol h-1 

g-1 is obtained for 1/20-PCN-B, even much lower than that of undoped g-C3N4 (108 mol 

h-1 g1). On basis of the above result, PCN-B with the optimal mass ratio (AEP:ME) of 1/60 

was selected for investigation in this work.

Fig. S2  SEM image (a) of PCN-B and its corresponding EDS elemental mapping images 

(b-d),
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Fig. S3  SEM images of (a) CN-B and (b) CN-S.

 Fig. S4 Original version of the AFM image of PCN-S. 
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Fig. S5 The pores formation mechanism of PCN-B and PCN-S.  

During the thermal poly-condensation, the AEP decomposes to release ammonia 

bubbles, and their breakage leads to the formation of pores in the layer of PCN-B (The 

porous morphology of PCN-B is presented in Fig. S2a). Further thermal exfoliation of 

PCN-B results in the formation of porous nanosheets structure of PCN-S as shown in Fig. 

1a. Moreover, due to the random bubbles generation and pores formation, both PCN-B 

and PCN-S exhibit a broad pore size distribution, as displayed in Fig. 1b. 
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Fig. S6 (a) XRD patterns and (b) FT-IR spectra of CN-B, CN-S, PCN-B and PCN-S.
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Fig. S7 (a) EDX pattern and (b) high-resolution P 2p XPS spectrum of PCN-S.
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Fig. S8 The high-resolution XPS spectra of (a) C 1s and (b) N 1s for PCN-S. 

Fig. S8a and b show the high-resolution XPS spectra of C 1s and N 1s for PCN-S. The C 1s 

spectrum of PCN-S was deconvoluted into two components. The dominant peak at 288 

eV is assigned to sp2 bonded carbon in N-containing aromatic rings (N=C-N).1 And the 

peak at 284.8 eV corresponds to the sp2 C-C bonds.1 Moreover, the N 1s spectrum of 

PCN-S can be fitted with three contributions located at 398.5 eV, 400.3 eV and 404 eV, 

which are ascribed to sp2 bonded nitrogen in N-containing aromatic rings (C-N=C), 

tertiary nitrogen (N-(C)3) and charging effects or positive charge location.2 
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Fig. S9 The band gap energy (Eg) for (a) CN-B and (b) CN-S; the band gap energy (Eg) and 

transition energy (Et) from VB to the midgap states for (c) PCN-B and (d) PCN-S. 
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Fig. S10 TDOS and PDOS of (a) pure g-C3N4 and (b) P-doped g-C3N4 . The Fermi level is set 

to the zero of energy.
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Fig. S11 Mott-Schottky plots of (a) CN-B (b) CN-S (c) PCN-B and (d) PCN-S in 0.2 M 

Na2SO4 aqueous solution.

As presented in Fig. S11a-d, the flat band potentials of CN-B, CN-S, PCN-B and PCN-S are 

determined to be at -1.38 V, -1.44 V, -1.31 V and -1.45 V vs. Ag/AgCl at pH = 6.6, which 

correspond to -0.76 V, -0.82 V, -0.69 V and -0.83 V vs. SHE at pH = 0, respectively.   
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Fig. S12 QE of (a) CN-B, (b) CN-S and (c) PCN-B at 420 nm, 460 nm, 500 nm or 540 nm, 

respectively.  
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Fig. S13 Steady-state PL spectra of CN-B, CN-S, PCN-B and PCN-S at 350 nm excitation 

light.
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Fig. S14 TG curve of 2-aminoethylphosphonic acid (AEP) and (NH4)2HPO4.
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Fig. S15 TEM image (a) of PCN-S and its corresponding EELS elemental mapping images 

(b-d).
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Fig. S16 The high-resolution XPS spectra of C 1s for PCN-B and PCN-B*. The table in Fig. 

S16 shows the C1 and C2 peak area percentages for PCN-B and PCN-B*, respectively.
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Fig. S17 (a) TPC responses of CN-B, CN-S, PCN-B and PCN-S electrodes in 0.2 M Na2S + 

0.04 M Na2SO3 mixed aqueous solution under visible-light irradiation and (b) Time 

course of photocatalytic H2-production over sample PCN-S. The reaction system is 

purged with Ar every three hours for 30 min to remove the H2 inside.   
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