Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2015

> Electronic Supplementary Information (ESI) for Energy & Environmental Science © The Royal Society of Chemistry 2015

Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H₂ production

Jingrun Ran,^a Tian Yi Ma,^a Guoping Gao,^b Xi-Wen Du^c and Shi Zhang Qiao*^{a,c}

^{a.} School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005,

Australia.

E-mail: <u>s.qiao@adelaide.edu.au</u>

 ^{b.} School of Chemistry, Physics and Mechanical Engineering Faculty, Queensland University of Technology, Garden Point Campus, QLD 4001, Brisbane, Australia.
 ^{c.} School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China.

The calculation of H₂ amount produced in the reactor:

Since the H_2 concentration in the 0.2 mL sample gas is usually assumed to be the same to that in the head space of the reactor, the total amount of H_2 produced in the reactor can be calculated by Equation (1):

H2 amount in the reactor $[\mu mol] =$

H2 amount in the 0.2 ml sample gas $[\mu mol] \times \frac{\text{head space volume in the reactor [ml]}}{0.2 \text{ [ml]}}$

(1)

Samples	S _{BET} (m ² g ⁻¹)	PV ^a (cm ³ g ⁻¹)	E_g^b (eV)	QE at 420 nm (%)		
CN-B	5.6	0.03	2.78	0.59		
CN-S	84.2	0.23	2.94	2.60		
PCN-B	8.3	0.04	2.68	1.50		
PCN-S	122.6	0.27	2.91	3.56		
^{<i>a</i>} PV: Pore volume, ^{<i>b</i>} E _g : Band gap.						

Table S1 Physicochemical properties and QE of CN-B, CN-S, PCN-B and PCN-S

Samples	τ_1 (ns)	Rel (%)	τ_2 (ns)	Rel (%)	τ (ns)	χ^2
CN-B	2.885	67.15	15.966	32.85	7.18	1.043
CN-S	3.325	65.10	21.232	34.90	9.58	1.049
PCN-B	3.460	64.10	20.267	35.90	9.49	1.105
PCN-S	3.927	67.60	19.988	32.40	9.13	1.099

Table S2 Kinetic analysis of emission decay for CN-B, CN-S, PCN-B and PCN-S

 Table S3 Parameters of equivalent circuit for the impedance data of CN-B, CN-S, PCN-B

and PCN-S

Samples	R _t (Ω)	R _s (Ω)

Fig. S1 Comparison of the photocatalytic activities of CN-B, 1/70-PCN-B, PCN-B, 1/40-PCN-B, 1/30-PCN-B and 1/20-PCN-B for the H₂ production using 20 v% TEOA aqueous solution as a sacrificial reagent under visible-light irradiation (\geq 400 nm, 300 W Xe lamp).

In order to determine the optimal doping content of P in g-C₃N₄ for photocatalytic H₂ production, a series of bulk P-doped g-C₃N₄, *i.e.* 1/70-PCN-B, 1/40-PCN-B, 1/30-PCN-B and 1/20-PCN-B were synthesized, following the same procedure as that of PCN-B except that the mass ratio of 2-aminoethylphosphonic acid (AEP):melamine (ME) was changed to 1/70, 1/40, 1/30 and 1/20, respectively. Then the effect of mass ratio (AEP:ME) on the photocatalytic H₂-production activity was investigated. As shown in Fig.

S1, the doping of P in g-C₃N₄ improves the photocatalytic activity towards H₂ production. The photocatalytic H₂-production activity is gradually enhanced as the mass ratio increased and the highest photocatalytic H₂-production activity of 510 µmol h⁻¹ g⁻¹ is achieved at the mass ratio of 1/60 (PCN-B). However, further increasing the mass ratio leads to the reduction of photocatalytic H₂-production activity. Surprisingly, when the mass ratio reaches 1/20, a very low photocatalytic H₂-production activity of 16 µmol h⁻¹ g⁻¹ is obtained for 1/20-PCN-B, even much lower than that of undoped g-C₃N₄ (108 µmol h⁻¹ g¹). On basis of the above result, PCN-B with the optimal mass ratio (AEP:ME) of 1/60 was selected for investigation in this work.

Fig. S2 SEM image (a) of PCN-B and its corresponding EDS elemental mapping images (b-d),

Fig. S3 SEM images of (a) CN-B and (b) CN-S.

Fig. S4 Original version of the AFM image of PCN-S.

Fig. S5 The pores formation mechanism of PCN-B and PCN-S.

During the thermal poly-condensation, the AEP decomposes to release ammonia bubbles, and their breakage leads to the formation of pores in the layer of PCN-B (The porous morphology of PCN-B is presented in Fig. S2a). Further thermal exfoliation of PCN-B results in the formation of porous nanosheets structure of PCN-S as shown in Fig. 1a. Moreover, due to the random bubbles generation and pores formation, both PCN-B and PCN-S exhibit a broad pore size distribution, as displayed in Fig. 1b.

Fig. S6 (a) XRD patterns and (b) FT-IR spectra of CN-B, CN-S, PCN-B and PCN-S.

Fig. S7 (a) EDX pattern and (b) high-resolution P 2p XPS spectrum of PCN-S.

Fig. S8 The high-resolution XPS spectra of (a) C 1s and (b) N 1s for PCN-S.

Fig. S8a and b show the high-resolution XPS spectra of C 1s and N 1s for PCN-S. The C 1s spectrum of PCN-S was deconvoluted into two components. The dominant peak at 288 eV is assigned to sp² bonded carbon in N-containing aromatic rings (N=C-N).¹ And the peak at 284.8 eV corresponds to the sp² C-C bonds.¹ Moreover, the N 1s spectrum of PCN-S can be fitted with three contributions located at 398.5 eV, 400.3 eV and 404 eV, which are ascribed to sp² bonded nitrogen in N-containing aromatic rings (C-N=C), tertiary nitrogen (N-(C)3) and charging effects or positive charge location.²

Fig. S9 The band gap energy (E_g) for (a) CN-B and (b) CN-S; the band gap energy (E_g) and transition energy (E_t) from VB to the midgap states for (c) PCN-B and (d) PCN-S.

Fig. S10 TDOS and PDOS of (a) pure $g-C_3N_4$ and (b) P-doped $g-C_3N_4$. The Fermi level is set to the zero of energy.

Fig. S11 Mott-Schottky plots of (a) CN-B (b) CN-S (c) PCN-B and (d) PCN-S in 0.2 M Na_2SO_4 aqueous solution.

As presented in Fig. S11a-d, the flat band potentials of CN-B, CN-S, PCN-B and PCN-S are determined to be at -1.38 V, -1.44 V, -1.31 V and -1.45 V vs. Ag/AgCl at pH = 6.6, which correspond to -0.76 V, -0.82 V, -0.69 V and -0.83 V vs. SHE at pH = 0, respectively.

Fig. S12 QE of (a) CN-B, (b) CN-S and (c) PCN-B at 420 nm, 460 nm, 500 nm or 540 nm, respectively.

Fig. S13 Steady-state PL spectra of CN-B, CN-S, PCN-B and PCN-S at 350 nm excitation light.

Fig. S14 TG curve of 2-aminoethylphosphonic acid (AEP) and (NH₄)₂HPO₄.

<mark>S15</mark>

Fig. S15 TEM image (a) of PCN-S and its corresponding EELS elemental mapping images (b-d).

Fig. S16 The high-resolution XPS spectra of C 1s for PCN-B and PCN-B*. The table in **Fig. S16** shows the C1 and C2 peak area percentages for PCN-B and PCN-B*, respectively.

Fig. S17 (a) TPC responses of CN-B, CN-S, PCN-B and PCN-S electrodes in 0.2 M $Na_2S + 0.04$ M Na_2SO_3 mixed aqueous solution under visible-light irradiation and (b) Time course of photocatalytic H₂-production over sample PCN-S. The reaction system is purged with Ar every three hours for 30 min to remove the H₂ inside.

References

- 1. G. Zhang, J. Zhang, M. Zhang and X. Wang, J. Mater. Chem., 2012, 22, 8083.
- 2. A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.-O. Muller, R. Schlogl and J. M.

Carlsson, J. Mater. Chem., 2008, 18, 4893.