Supplementary Information

Advanced porous membranes with ultra-high selectivity and stability for Vanadium flow battery

Zhizhang Yuan^{a,c}, Yinqi Duan^a, Hongzhang Zhang^a, Xianfeng Li^{a,b*}, Huamin Zhang^{a,b*} & Ivo

Vankelecom^d

^a Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences,

457 Zhongshan Road, Dalian 116023 (P. R. China), Email: lixianfeng@dicp.ac.cn, zhanghm@dicp.ac.cn

^b Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian 116023

(P.R. China)

^c Graduate School of Chinese Academy of Sciences, Beijing 100039 (P. R. China)

^d Centre for Surface Chemistry and Catalysis, Faculty of Bioscience Engineering, Katholieke

Universiteit Leuven (KU Leuven), Kasteelpark Arenberg 23-Box 2461, B-3001 Leuven, (Belgium)

Supplementary Fig. S1 Polybenzimidazole (PBI) polymer synthesis and characterization. a, the synthesis of PBI. b, the ¹H NMRspectra of PBI. c, the FTIR spectra of PBI.

Supplementary Fig. S2 The morphology of PBI-68 and the distribution of positively charged nitrogenin it. a, HR-STEM image of PBI-68; scale bar, 200 nm. b, magnified HR-STEM image of PBI-68; scale bar, 10 nm. c, Corresponding EDS spectra of the marked area in panel a.

Supplementary Fig. S3 The cycling performance of a vanadium flow battery using PBI-68 and Nafion 115 with current densities ranging from 40 to 200 mA/cm².

Supplementary Fig. S4 Vanadium transfer behavior of prepared PBI porous membranes and Nafion 115 membrane. a, Open circuit voltage of the VFB assembled with PBI-68 and Nafion 115 membranes. b, Change of VO^{2+} and $VO_{2^{+}}$ in the positive half cells when employing PBI-68 or Nafion 115 as a membrane during the cycling test. c, Change of V^{2+} and V^{3+} in the negative half cells when employing PBI-68 or Nafion 115 as a membrane during the cycling test. c, Change of V^{2+} and V^{3+} in the negative half cells when employing PBI-68 or Nafion 115 as a membrane during the positive and negative half cells when employing PBI-68 or Nafion 115 as a membrane during the cycling test.

Supplementary Fig. S5 Electrochemical stability of PBI-68 porous membrane. a, outstanding cycling stability of PBI-68 at high temperatures (45°C and 50 °C; current density, 120 mA/cm²). b, cycling performance of PBI-68 at high current density (180 mA/cm²).