Electronic Supplementary Information

Metal-organic-framework-engaged formation of Co nanoparticles-embedded carbon@Co₉S₈ double-shelled nanocages for efficient oxygen reduction

Han Hu,^a Lei Han,^a Mengzhou Yu,^b Zhiyu Wang*^b and Xiong Wen (David) Lou*^a

^{*a*} School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, (Singapore) E-mail: <u>xwlou@ntu.edu.sg</u>; <u>davidlou88@gmail.com</u>;

Webpage: http://www.ntu.edu.sg/home/xwlou/

^bCarbon Research Laboratory, School of Chemical Engineering, State Key Lab of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning, 116024, China Email: <u>zywang@dlut.edu.cn</u>

Experimental details

Synthesis of ZIF-67 polyhedrons: In a typical synthesis, two solutions were prepared by dissolving $Co(NO_3)_2$ 6H₂O (291 mg) and 2-methylimidazole (328 mg) in 25 mL of methanol, respectively. Then, the two solutions were mixed rapidly and aged for 24 h at room temperature. The precipitate was washed by ethanol for 4 times before vacuum dried at room temperature overnight.

Synthesis of ZIF-67@*a*-CoS yolk-shell structures: 40 mg of ZIF-67 particles was dispersed in 40 mL of ethanol under ultrasonic, followed by adding 0.18 g of thioacetamide (TAA) and refluxing at 90 °C for 12 min. Afterwards, the products were harvested by several rinsing-centrifugation cycles. By prolonging the reaction time to 30 min, *a*-CoS nanocages with entirely hollow cavity can be obtained.

Synthesis of $Co-C@Co_9S_8$ DSNCs: The Co-C@Co_9S_8 DSNCs were fabricated by annealing ZIF-67@a-CoS yolk-shell structures in nitrogen flow for 2 h at 600 °C with a ramp rate of 1 °C

min⁻¹. For comparison, Co-C polyhedrons and Co_9S_8 nanocages were also prepared by annealing ZIF-67 particles and *a*-CoS nanocages under similar conditions, respectively.

Materials Characterization: X-ray diffraction (XRD) patterns were collected on a Bruker D2 Phaser X-Ray Diffractometer with Ni filtered Cu $K\alpha$ radiation ($\lambda = 1.5406$ Å) at a voltage of 30 kV and a current of 10 mA. Field-emission scanning electron microscopy (FESEM; JEOL, JEM-6700F, 5 kV) and transmission electron microscopy (TEM; JEOL, JEM-1400/JEM-2010, 200 kV) were utilized to analyze the microstructures of different samples. The nitrogen adsorption-desorption isotherms of Co-C@Co₉S₈ DSNCs, Co-C polyhedrons and Co₉S₈ nanocages were recorded with a Quantachrome Autosorb AS-6B system.

Electrochemical Measurements: The electrocatalytic activity of the samples was examined by using a three-electrode system with a PARSTAT MC potentiostat/galvanostat workstation. A polished glass carbon (GC) disk electrode was used as a support. The catalyst suspension was prepared by dispersing 5 mg of the catalyst in 1 mL of ethanol under sonication. In order to prepare the working electrode, 15 μ L of the suspension was pipetted on the surface of GC electrode, followed by dropping another 5 μ L of Nafion solution (0.5 wt.%) to glue the catalyst on the surface of GC electrode. The counter electrode and reference electrode were a Pt wire and a saturated calomel electrode (SCE), respectively. All the measured potentials were referred to reversible hydrogen electrode (RHE) with following equation:

$$E(RHE) = E(SCE) + (0.242 + 0.059 \text{ pH})V$$

The cyclic voltammetry (CV) measurements for Co-C polyhedrons, Co-C@Co₉S₈ DSNCs and 20 wt.% Pt/C in both Ar- and O₂-saturated KOH solutions were performed in the potential range of 0 to 1.2 V with a scan rate of 10 mV s⁻¹ while other CV curves were recorded in the potential range

of 0 to 1 V. Furthermore, the CV curves of the Co-C@Co₉S₈ DSNCs at scan rates of 20, 50 and 100 mV s⁻¹ in O₂-saturated KOH solutions were also recorded. For comparison of the effect of methanol crossover, the CV curves of Co-C@Co₉S₈ DSNCs and 20 wt.% Pt/C in O₂-saturated mixture solution containing KOH and methanol (KOH, 0.1 M; methanol, 3.0 M) were conducted. The polarization curves for ORR were conducted at various rotation speeds from 400 to 2,500 rpm with a scan rate of 10 mV s⁻¹. The *I-t* curves were tested in O₂-saturated solution under a fixed potential with a rotation speed of 1600 rpm. Before testing, the electrodes were cycled at 100 mV s⁻¹ until reproducible CV curves were obtained.

On the basis of the RDE data, the electron transfer number (n) was calculated from the Koutecky–Levich (K-L) equation:

$$1/j = 1/j_k + 1/B\omega^{1/2}$$

Where j_k is the kinetic current and ω represents the rotation speed. *B* can be determined from the slope of the K-L plots. Then, n can be obtained via the followed equation:

$$n=B/(0.2F(Do_2)^{2/3}(v)^{-1/6}Co_2)$$

where *F* is Faraday constant (96485 C mol⁻¹), Do_2 is the diffusion coefficient of O_2 (1.9×10⁻⁵ cm² s⁻¹), *v* is the kinetic viscosity (v = 0.01 cm² s⁻¹) and Co_2 is the bulk concentration of O_2 (1.2×10⁻⁶ mol cm⁻³). When expressing the rotation speed in rpm, the constant 0.2 is applied.

Fig. S1 (a) XRD pattern of ZIF-67 polyhedrons; (b, c) FESEM images of ZIF-67 polyhedrons; (d) TEM image of ZIF-67 polyhedrons.

Fig. S2 (a) XRD pattern of ZIF-67@a-CoS yolk-shell structures; (b) FESEM image of an individual yolk-shell structure with broken shell; (c, d) TEM images of ZIF-67@a-CoS yolk-shell structures.

Fig. S3 (a) XRD pattern of Co-C@Co₉S₈ DSNCs; (b) FESEM images of Co-C@Co₉S₈ DSNCs; (c) FESEM image of an individual Co-C@Co₉S₈ nanocage with broken shell; (d) TEM image of Co-C@Co₉S₈ DSNCs.

Fig. S4 TEM images of (a) outer Co_9S_8 shell and (b) inner Co-C nanocage. They were obtained by breaking the Co-C@Co₉S₈ DSNCs under strong ultrasonic.

Fig. S5 (a) XRD pattern, (b, c) FESEM images, (d) TEM image, (e) HRTEM image, and (f) SAED pattern of concave Co-C polyhedrons, which were obtained by directly annealing ZIF-67 polyhedrons at 600 °C in nitrogen flow.

Fig. S6 (a) CV curves of a commercial 20 wt.% Pt/C catalyst in Ar- and O₂-saturated 0.1 M KOH solution; (b) LSV curves of Pt/C catalyst at different rotation rates; (c) Koutecky–Levich plots of Pt/C catalyst at various potentials.

Fig. S7 Comparison of the LSV curves of $Co-C@Co_9S_8$ DSNCs and Pt/C at the rotation speed of 1600 rpm.

Fig. S8 CV curves of Co-C@Co₉S₈ DSNCs in O₂-saturated 0.1 M KOH solution at scan rates of (a) 20, (b) 50 and (c) 100 mV s⁻¹.

Fig. S9 (a) XRD pattern, (b, c) FESEM images, (d) TEM image, (e) HRTEM image, and (f) SAED pattern of Co_9S_8 nanocages, which were obtained by directly annealing a-CoS nanocages at 600 °C in nitrogen flow.

Fig. S10 (a) CV curves of Co_9S_8 nanocages in Ar- and O_2 -saturated 0.1 M KOH solution; (b) LSV curves of Co_9S_8 nanocages at different rotation rates; (c) Koutecky–Levich plots of Co_9S_8 nanocages at various potentials.

Fig. S11 (a) CV curves of Co-C polyhedrons in Ar- and O₂-saturated 0.1 M KOH solution; (b) LSV curves of Co-C polyhedrons at different rotation rates; (c) Koutecky–Levich plots of Co-C polyhedrons at various potentials.

Fig. S12 Nitrogen adsorption-desorption isotherms of $Co-C@Co_9S_8$ DSNCs (a), Co-C polyhedrons (b), and Co_9S_8 nanocages (c) at 77 K.

Fig. S13 CV curves of (a) Co-C@Co₉S₈ DSNCs and (b) Pt/C in O₂-saturated KOH solution (0.1 M) and O₂-saturated mixture solution (KOH, 0.1 M; Methanol, 3 M).

Fig. S14 (a) CV curves of Co-C@Co₉S₈ DSNCs in Ar- and O₂-saturated 0.1 M HClO₄ solution at a scan rate of 10 mV s⁻¹; (b) LSV curves of Co-C@Co₉S₈ DSNCs at different rotation rates; (c) Koutecky–Levich plots of Co-C polyhedrons at various potentials; (d) Chronoamperometric responses of Co-C@Co₉S₈ DSNCs at 0.4 V in O₂-saturated 0.1 M HClO₄ solution at 1600 rpm.

reported electrocatalysts								
Catalyst	Onset Potential/V	Cathodic peak potential/V	Electrolyte	Scan rate/ mV s ⁻¹	Reference			
Fe ₃ O ₄ /N-GAs	0.774	0.624	0.1 M KOH	100	1			
g-C ₃ N ₄ @CMK-3		0.714	0.1 M KOH		2			
N-S-G		0.724	0.1 M KOH	100	3			
N-CG-CoO		0.753	1 M KOH	50	4			
N-carbon nanosheets		0.73	0.1 M KOH	50	5			
N-carbon nanocages	0.834	0.744	0.1 M KOH	10	6			
N-carbon		0.776	0.1 M KOH	10	7			
NiCo ₂ S ₄ @N/S-rGO	0.854	0.744	0.1 M KOH	20	8			
G-CN800		0.714	0.1 M KOH	100	9			
Co-C@Co ₉ S ₈ DSNCs	0.96	0.83	0.1 M KOH	10	This work			
Co-C@Co ₉ S ₈ DSNCs	0.91	0.80	0.1 M KOH	20	This work			
Co-C@Co ₉ S ₈ DSNCs	0.89	0.77	0.1 M KOH	50	This work			
Co-C@Co ₉ S ₈ DSNCs	0.87	0.75	0.1 M KOH	100	This work			
Pt/C	1.05	0.87	0.1 M KOH	10	This work			

Table S1 Comparison of the electrocatalytic activity of $Co-C@Co_9S_8$ DSNCs with some newly

 Table S2 Comparison of current densities of samples at different potentials and rotation speeds

_		Deference			
Sample	0.4 V		0.5 V		Reference
_	2500 rpm	1600 rpm	2500 rpm	1600 rpm	-
Co-C@Co ₉ S ₈ DSNCs	5.3	4.71	5.05	4.50	This work
G-Co/CoO	5.1	4.4	4.95	4.32	10
Carbon-L		3.72		3.51	5
Co ₃ S ₄ /G		3.17		2.99	11

Supplementary References

- Z. S. Wu, S. Yang, Y Sun, K. Parvez, X. L. Feng, K. Müllen, *J. Am. Chem. Soc.*, 2012, 134, 9082.
- Y. Zheng, Y. Jiao, J. Chen, J. Liu, J. Liang, A. Du, W. M. Zhang, Z. H. Zhu, S. C. Smith, M. Jaroniec, G. Q. Lu, S. Z. Qiao, *J. Am. Chem. Soc.*, 2011, **133**, 20116.
- 3. J. Liang, Y. Jiao, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed., 2012, 51, 11496.
- 4. S. Mao, Z. Wen, T. Huang, Y. Hou, J. H. Chen, *Energy Environ. Sci.*, 2014, 7, 609.
- 5. P. Zhang, F. Sun, Z. H. Xiang, Z. G. Shen, J. Yun, D. P. Cao, *Energy Environ. Sci.*, 2014, **7**, 442.
- S. Chen, J. Bi, Y. Zhao, L. Yang, C. Zhang, Y. Ma, Q. Wu, X. Wang, Z. Hu, *Adv. Mater.*, 2012, 24, 5593.
- S. Gao, K. Geng, H. Liu, X. Wei, M. Zhang, P. Wang, J. Wang, *Energy Environ. Sci.*, 2015, 8, 221.
- 8. Q. Liu, J. Jin, J. Zhang, ACS Appl. Mater. Interfaces, 2013, 5, 5002.
- 9. S. Yang, X. L. Feng, X. Wang, K. Müllen, Angew. Chem. Int. Ed., 2011, 50, 5339.
- 10. S. J. Guo, S. Zhang, L. H. Wu, S. H. Sun, Angew. Chem. Int. Ed., 2012, 51, 11770.
- 11. N. Mahmood, C. Z. Zhang, J. Jiang, F. Liu, Y. L. Hou, Chem. Eur. J., 2013, 19, 5183.