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Table S1. Process and economic data for the three scenarios studied in the TEA

Water-wash® One-pot HG | One-pot HG
(current)® (projected)*
Biomass processed (dry MT/day) 2000 2000 2000
Biomass price ($/dry ton, delivered at plant-gate) | 80 80 80
Pretreatment
IL used [C,C1Im][OAC] [Ch][Lys] [Ch][Lys]
IL purity (wt% of IL in aqueous IL solution 90 10 10
[IL:H,0])
IL/Biomass ratio (mass ratio on dry basis) 3.6 0.29 0.29
IL recovery (%) 99.9 99.9 99.9
IL price (S/kg) 5 5 2
Water loading (mass ratio between water and 20 N/A N/A
biomass in water-wash step in WW route)
Loss of glucan in water-wash step (wt% of initial | 5 NONE NONE
glucan)
Loss of xylan in water-wash step (wt% of initial 24 NONE NONE
xylan)
Hydrolysis
Enzyme loading (mg/g glucan present in initial 20 20 10
biomass)
Enzyme price (S/kg protein) 4.29 4.29 4.29
Glucan-to-glucose conversion (%) 98 84 90
Xylan-to-xylose conversion (%) 79 80 90
Fermentation
Co-fermentation of glucose and xylose YES NO (only YES
Glucose)
Glucose-to-ethanol conversion (%) 95 90 90
Xylose-to-ethanol conversion (%) 60 0 90

®based on (Cruz et al. 2013, Li et al. 2013, Li et al. 2015, Shi et al. 2014, Uppugundla et al. 2014)
®constructed to represent the ‘current’ one-pot HG process in this study
‘constructed to represent ‘projected’ one-pot HG process with perceived advances (esp. with yield

and enzyme loading)
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Figure S1. Glucose yields from saccharification of choline-based ionic liquid (IL1: [Ch][Lys]; IL 2:
[Ch],[Asp]) pretreated corn stover. (A) Glucose yields with different ratios (R: 0.2, 0.3, and 0.5) of
biomass to ionic liquid loading in pretreatment; (B) Glucose yield after pretreatment with solid loading
from 8.6 to 34.2 wt%.
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Figure S2. Glucose yields from saccharification of choline-based ionic liquids (IL1: [Ch][Lys]; IL 2:

[Ch],[Asp]) pretreated corn stover (mass loading of 29.9 wt% and 34.2 wt%) with different ionic liquid
loading.



Water-wash route process configuration
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Figure S3. Simplified block flow diagram of water-wash process configuration



One-pot HG process configuration with fed-batch hydrolysis
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Figure S4. Simplified block flow diagram of one pot HG process configuration



Section-wide cost breakdown
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Figure S5. Section wide production costs (including CapEx and OpEx)
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Figure S6. Xylose yields from [Ch][Lys] pretreated corn stover. The ionic liquid loading is 10%.
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