Electronic supplementary information

for

Power generation from nanostructured PbTe-based thermoelectrics: Comprehensive development from materials to modules

Xiaokai Hu,^{a,‡} Priyanka Jood,^{a,‡} Michihiro Ohta,^{a,*} Masaru Kunii,^a Kazuo Nagase,^a Hirotaka Nishiate,^a Mercouri G. Kanatzidis,^{b,c}, Atsushi Yamamoto^a

^aResearch Institute for Energy Conservation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan

^bDepartment of Chemistry, Northwestern University, Evanston, Illinois 60208, USA

^cMaterials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

[‡]X.H. and P.J contributed equally to this work.

*Corresponding author: ohta.michihiro@aist.go.jp

Electrical resistance of PbTe–2% MgTe doped with 4% Na (*p*-type) and PbTe doped with 0.2 % PbI₂ (*n*-type) legs with $Co_{0.8}Fe_{0.2}$ diffusion layers measured by line scanning along the length at room temperature. Few changes have been found for both samples.

Temperature dependence of the (a) thermal diffusivity (*D*) and (b) heat capacity (C_P) for the PbTe–2% MgTe doped with 4% Na (*p*-type) and PbTe doped with 0.2 % PbI₂ (*n*-type).

(a) High-angle annular dark-field scanning transmission electron microscope image image of *n*-type PbTe doped with 0.2% PbI₂. (b), (c), and (d) Energy dispersive elemental mapping of the area shown in (a) for elements I, Pb, and Te.

Temperature dependence of the calculated Lorenz number (*L*) of *p*-type PbTe–2% MgTe doped with 4% Na and *n*-type PbTe doped with 0.2% PbI₂.

Measured (a) open-circuit voltage (V_{oc}), (b) maximum power output (P_{max}) and internal resistance (R_{in}), (c) open-circuit heat flow (Q_{oc}), and (d) maximum conversion efficiency (η_{max}) of the nanostructured PbTe-based module (PbTe-2% MgTe doped with 4% Na (*p*-type) and PbTe doped with 0.2 % PbI₂ (*n*-type)) as functions of temperature difference (ΔT). The module testing was performed four times on the same module with T_h at 873, 773, 673, and 573 K, and T_c at 283 K except T_c at 303 K for the second measurement to confirm the reproducibility.

Temperature dependence of the (a) Seebeck coefficient (S), (b) electrical resistivity (ρ), (c) total thermal conductivity (κ_{total}), and thermoelectric figure of merit (*ZT*) of commercial *p*- and *n*-type Bi₂Te₃ which was used to fabricate the segmented module.

Measured (a) open-circuit voltage (V_{oc}), (b) maximum power output (P_{max}) and internal resistance (R_{in}), (c) open-circuit heat flow (Q_{oc}), and (d) maximum conversion efficiency (η_{max}) of the segmented Bi₂Te₃/nanostructured PbTe (Bi₂Te₃/PbTe–MgTe (ptype)–Bi₂Te₃/PbTe (n-type)) module as functions of temperature difference (ΔT). The first and second measurements are performed with T_c at 283 K and T_h at 873, 773, 673, and 573 K, while the third measurement is done with T_h at 873 K and T_c at 283, 303, and 323 K.

Temperature dependence of the (a) electrical resistivity (ρ) and Seebeck coefficient (*S*) and (b) total thermal conductivity (κ_{total}) and thermoelectric figure of merit (*ZT*) of Co_{0.8}Fe_{0.2} which was used as diffusion layer for PbTe legs.

Table S1

Density (*d*) of sintered samples prepared in this study. The theoretical *d* of pure PbTe is 8.24 g cm^{-3} .

Chemical composition	d (g cm ⁻³)	
PbTe-2% MgTe doped with 4% Na	8.08	
PbTe doped with 0.2 % PbI_2	7.82	

Table S2

Material's properties and geometrical parameters used for simulating power generation of the nanostructured PbTe-based module (PbTe-2% MgTe doped with 4% Na (*p*-type) and PbTe doped with 0.2 % PbI₂ (*n*-type)).

Material	Seebeck	Electrical	Thermal	Size
	coefficient	conductivity	conductivity	(mm)
	(V/K)	(S/m)	(W/(m·K))	
<i>p</i> -PbTe-based	$S_{\rm p}(T)^{(1)}$	$1/\rho_{\rm p}(T)^{(2)}$	$k_{\rm p}(T)^{(3)}$	2×2×2.2
thermoelectric		Ĩ		
material				
<i>n</i> -PbTe-based	$S_{\rm n}(T)^{(1)}$	$1/\rho_{\rm n}(T)^{(2)}$	$k_{\rm n} (T)^{(3)}$	2×2×2.2
thermoelectric				
material				
Co _{0.8} Fe _{0.2} diffusion	$S_{\rm CoFe}(T)^{(1)}$	$1/\rho_{\rm CoFe}(T)^{(2)}$	$k_{\rm CoFe}(T)^{(3)}$	2×2×0.3
barrier (Figure S8)				
Cu interconnecting	-10-6	8×10^{7}	400	5×2×1 (0.1)
electrode				
Cu lead wire	-10-6	8×10 ⁹	0.01	1×1×4.8
Electrical load	-10-6	10-4,	200	1×8×1
resistance		$10^{4} \sim 2 \times 10^{5}$		
Heat sink	NA	NA	200	1×8×0.5
Aluminum substrate	NA	NA	200	18×15×1
Insulated polymer	NA	NA	10	18×15×0.05
film				

(1)

 $S_{\rm p}(T) = -3.1591 \times 10^{-13} T^3 - 8.1391 \times 10^{-11} T^2 + 7.6928 \times 10^{-7} T - 1.5799 \times 10^{-4}$ $S_{\rm n}(T) = 8.8024 \times 10^{-13} T^3 - 1.4263 \times 10^{-9} T^2 + 4.5166 \times 10^{-7} T - 1.1317 \times 10^{-4}$ $S_{\rm CoFe}(T) = 1.1430 \times 10^{-16} T^3 + 7.9744 \times 10^{-11} T^2 - 1.2843 \times 10^{-7} T + 1.2257 \times 10^{-5}$

(2)

 $\begin{aligned} \rho_{\rm p}\left(T\right) &= -1.5365 \times 10^{-13} \ T^3 + 2.5123 \times 10^{-10} \ T^2 - 8.5114 \times 10^{-8} \ T + 1.1182 \times 10^{-5} \\ \rho_{\rm n}\left(T\right) &= -1.9315 \times 10^{-14} \ T^3 + 1.2018 \times 10^{-10} \ T^2 - 7.6049 \times 10^{-8} \ T + 1.8911 \times 10^{-5} \\ \rho_{\rm CoFe}\left(T\right) &= -5.7185 \times 10^{-16} \ T^3 + 1.5707 \times 10^{-12} \ T^2 - 4.8920 \times 10^{-10} \ T + 1.1294 \times 10^{-7} \end{aligned}$

(3)

 $k_{\rm p} (T) = -1.0899 \times 10^{-8} T^3 + 3.0486 \times 10^{-5} T^2 - 2.7721 \times 10^{-2} T + 9.3803 \times 10^{0}$ $k_{\rm n} (T) = -1.0776 \times 10^{-8} T^3 + 2.9196 \times 10^{-5} T^2 - 2.5897 \times 10^{-2} T + 8.7124 \times 10^{0}$ $k_{\rm CoFe} (T) = 1.8876 \times 10^{-8} T^3 + 2.0201 \times 10^{-5} T^2 - 9.0894 \times 10^{-2} T + 9.4741 \times 10^{10}$