Supplementary information for: The Intriguiging Question of Anionic Redox in High-Energy Density Cathodes for Li-ion Batteries

M. Saubanère^{1,3}, E. McCalla^{1,3}, J.-M. Tarascon^{1,3} M.-L. Doublet^{2,3}

¹ Collège de France, Laboratoire de Chimie du Solide et Energie,
11, Rue Marcelin Berthelot, 75005 Paris, France

² Institut Charles Gerhardt, CNRS - Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier, France.

³ Réseau Français sur le Stockage Electrochimique

de l'Energie - RS2E FR3459, Amiens, France

(Dated: October 6, 2015)

Fig. SI1 Density of states (DOS) of the LiRuO₃ and RuO₃ structures, as obtained from DFT+U calculations in the rigid structure model (RS) and after full structural relaxation, showing that the O-band is significantly shifted down to lower energy at RuO₃ compared to the DOS computed within the rigid structure approach, due to the stabilization of the oxygen network through the formation of short O-O dimers.

Fig. SI2: Orbital interaction diagram for the formation of the $(O_2)^{2-}$ peroxide and O_2 gas from the progressive oxidation of two non interacting O^{2-} anions. The shortening of the O-O distance leads to the splitting of the $O^{2-}(2p)$ -orbitals into two σ - and four π -type molecular orbitals. The number of electrons for each species is indicated in red in addition to the total bond order. Bond orders correspond to $\frac{1}{2}(N_e^B - N_e^{AB})$ where N_e and N_e^{AB} refer to the number of bonding and antibonding electrons, respectively.

Fig. SI3: Density of States (DOS) of the fully relaxed Li₂MnO₃ struture showing the predominant contribution of the oxygen levels at the Fermi level and Crystal Orbital Overlap populations (COOP) computed for the Mn-O and O-O bonds in the fully relaxed Li_{2-x}MnO₃ phases at x = 0, 1 and 2. The formation of strongly oxidized O-O dimers is identified at x = 2 by the emptying of all the σ^* and part of the π^* O-O electronic levels which corresponds to $(O_2)^{n-}$ with $n \leq 2$ from the O₂ molecular diagram of Figure SI2. The negligible Mn-O COOPs obtained for MnO₃ compared to LiMnO₃ and Li₂MnO₃ is compatible with the decrease of Mn-O bond covalency upon delithation and agrees with the O-O dimer decoordination from the metallic network when 2Li are removed. The orbitals associated with the emptied σ^* and π^* electronic levels are represented on the left part of the Figure.

Table S1: Computed averaged Bader atomic net populations in $Li_{2-x}MO_3$ (M = Ru, Mn) as a

function of the Lithium content x = 0,1,2. The values in parenthesis give the percentage of electron loss per atom in the rigid band model RB (removal of electrons) and in the fully relaxed

	RB		Relaxed	
$\operatorname{Li}_{2-x}\operatorname{MO}_3$ x	М	0	М	Ο
$\mathbf{M} = \mathbf{Ru}(4d) \ 0$	6.53	7.06	6.53	7.06
1	6.19 (37%)	6.86 (21%)	6.15~(46%)	6.91 (18%)
2	5.90 (25%)	6.64 (25%)	6.08~(7%)	6.63 (31%)
$\mathbf{M} = \mathbf{Mn}(3d) \ 0$	5.26	7.15	5.26	7.15
1	5.15(10%)	6.86 (30%)	5.22~(4%)	6.88~(32%)
2	5.10 (13%)	6.59 (29%)	5.38 (-17%)	6.54 (39%)

 $Li_{2-x}MO_3$ structures (Relaxed).

The results listed in the table show the cumulative cationic and anionic oxidation of $\text{Li}_{2-x}\text{RuO}_3$ from x = 0 to 1 and x = 1 to 2, respectively. The removal of 1Li shows a greater oxidation of Ru compared to O while the second Li-removal shows a greater oxidation of O. The comparison between the RB and fully relaxed results for $\text{Li}_{2-x}\text{RuO}_3$ clearly shows that a $M \longrightarrow O$ charge transfer occurs when the LiRuO₃ structure is relaxed (greater oxidation of Ru after structural relaxation) while a $O \longrightarrow M$ charge transfer occurs when the RuO₃ structure is relaxed (greater oxidation of O after structural relaxation). This highlights the partial reduction of the transition metal when the reductive coupling mechanism takes place. For the $\text{Li}_{2-x}\text{MnO}_3$ electrode, the removal of two consecutive Li confirms the predominant anionic redox: the oxidation of O is much larger than for the Ru-based material whatever is x and systematically increased after structural relaxation, in agreement with the lack of Mn(3d)/O(2p) overlap. The MnO₃ phase associated with the formation of strongly oxidized $(O_2)^{n-}$ (Relaxed) clearly shows the reduction of the Mn ions (negative charge transfer). Note that the Mn Bader net population obtained for MnO₃ (5.38) is very close to that obtained in the layered LiMnO₂ phase (5.45) in which Mn oxidation state is +3.