Supplementary Information for "Engineering the methylerythritol phosphate pathway in cyanobacteria for photosynthetic isoprene production from CO_2 " Gao et al.

Contents:

Table S1. Isoprene production from 20 engineered *S. elongatus* strains expressing various plant *ispS* genes.

Table S2. Intracellular concentrations of MEP pathway intermediates quantified by LC-MS.

Table S3. Kinetics of decreases in the unlabeled fraction of MEP pathway intermediates after switching to media with $[3-^{13}C]$ pyruvate.

Table S4. Photosynthetic carbon fluxes towards biomass synthesis and isoprene production at different growth stages of long-term cultivation.

Table S5. Comparison of productivity of various biochemicals from CO_2 in cyanobacteria.

Table S6. Strains and plasmids.

Table S7. Oligonucleotides used in this study.

Table S8. Extracellular concentrations of metabolites quantified by GC-MS

Fig. S1. Effect of treatment with DBMIB and DCMU on isoprene production of strains SE32 and SE52.

Fig. S2. Intracellular glycogen contents in *S. elongatus* wild type, SE52, and SE53 strains during long-term continuous production of isoprene.

References for Supplementary Materials.

Strain	Promoter	Source organism	Codon-	Isoprene
		for <i>ispS</i>	optimized	$(\mu g L^{-1})^{\dagger}$
SE01	$P_{\rm psbA2}$	Pueraria montana	+	59 ± 2
SE02	$P_{\rm psbA2}$	Populus trichocarpa	_	30 ± 2
SE03	$P_{\rm psbA2}$	Populus deltoides	_	26 ± 1
SE04	$P_{\rm psbA2}$	Eucalyptus globulus	_	263 ± 13
SE05	$P_{\rm psbA2}$	Populus alba	_	294 ± 7
SE06	$P_{\rm psbA2}$	Populus canescens	_	273 ± 7
SE16	$P_{\rm cpc}$	Pueraria montana	+	243 ± 17
SE17	$P_{\rm cpc}$	Populus alba	_	1084 ± 52
SE10	$P_{\rm cpc}$	Populus alba	+	1176 ± 34
SE18	$P_{\rm cpc}$	Populus canescens	_	935 ± 58
SE20	$P_{\rm cpc}$	Populus canescens	+	1174 ± 45
SE19	$P_{\rm cpc}$	Eucalyptus globulus	_	3462 ± 378
SE11	$P_{\rm cpc}$	Eucalyptus globulus	+	3063 ± 195
SE09	$P_{\rm trc}$	Pueraria montana	+	283 ± 15
SE07	$P_{\rm trc}$	Populus alba	_	988 ± 21
SE12	$P_{\rm trc}$	Populus alba	+	1365 ± 279
SE14	$P_{\rm trc}$	Populus canescens	_	1797 ± 545
SE15	$P_{ m trc}$	Populus canescens	+	4357 ± 381
SE08	$P_{ m trc}$	Eucalyptus globulus	-	5914 ± 291
SE13	$P_{\rm trc}$	Eucalyptus globulus	+	7733 ± 28

Table S1. Isoprene production from 20 engineered *S. elongatus* strains expressing various plant *ispS* genes.

*Codon-optimized sequences are indicated by (+) and native sequences are indicated by (–). †Cells were grown in shake flask cultures for 72 h. IPTG (1 mM) was added to cultures at OD_{730} of about 0.5 if needed. Errors indicate s.d. (n = 3).

 Table S2. Intracellular concentrations of MEP pathway intermediates quantified by LC-MS.

Studio	Intracellular concentration $(\mu M)^*$					
Strain	DXP	MEP	CDP-ME	MEcPP	HMBPP	
WT	23.5 ± 2.8	3.7 ± 0.2	0.2 ± 0.1	30.1 ± 4.6	1.9 ± 0.1	
SE13	20.7 ± 0.5	3.6 ± 0.1	0.3 ± 0.1	1878 ± 227	185.6 ± 5.3	
SE23	55.9 ± 1.4	39.5 ± 3.6	0.9 ± 0.2	12127 ± 606	1677 ± 180	

*Errors indicate s.d. (n = 3).

	8					1.				
Time	D	XP	M	EP	CDP	-ME	ME	cPP	HM	BPP
(min)	SE32	SE52								
0	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
1	0.9635	0.9414	0.9992	0.9927	0.9917	0.9872	0.9998	0.9691	0.9913	0.9385
2	0.9364	0.9142	0.9836	0.9537	0.9831	0.9630	0.9977	0.9156	0.9890	0.9107
4	0.9168	0.9042	0.9891	0.9627	0.9756	0.9677	0.9913	0.9201	0.9652	0.9234
8	0.9052	0.8886	0.9747	0.9462	0.9756	0.9604	0.9850	0.9150	0.9478	0.9314

Table S3. Kinetics of decreases in the unlabeled fraction of MEP pathway intermediates after switching to media with $[3-^{13}C]$ pyruvate.

Table S4. Photosynthetic carbon fluxes towards biomass synthesis and isoprene production at different growth stages of long-term cultivation.

		Biomass-C	Isoprene-C	Isoprene-C
Strain	Time (d)	$(\text{umol } \mathfrak{g}^{-1} \mathfrak{h}^{-1})$	$(\text{umol } g^{-1} h^{-1})$	Percentage
		(µmorg n)	(µmorg n)	(%)
SE52	0-3	889.3	188.5	17.5
SE32	3-21	24.2	45.9	65.6
SE54	0-3	847.4	147.3	14.8
SE34	3-21	72.5	26.2	26.5

Table S5. Comparison of productivity of various biochemicals from CO_2 in cyanobacteria.

Chemical	Host	Productivity	Inducer	Ref [*]
Chemical	1105t	$(\mu g L^{-1} h^{-1})$	muucei	Kei.
Terpenoids				
β-Caryophyllene	Synechocystis sp. 6803	0.3	_	1
β-Phellandrene	Synechocystis sp. 6803	1.0	_	2
Farnesene	Anabaena sp. 7120	1.29	_	3
α-bisabolene	Synechococcus sp. 7002	6.25	_	4
Limonene	Synechococcus sp. 7002	41	_	4
Isoprene	Synechocystis sp. 6803	4	_	5
Isoprene	S. elongatus 7942	2489	_	This work
Isoprene	S. elongatus 7942	4260	+	This work
Others				
Sucrose	S. elongatus 7942	36100	+	6
2,3-Butanediol	S. elongatus 7942	9847	+	7
Ethanol	Synechocystis sp. 6803	8833	_	8
Isobutyraldehyde	S. elongatus 7942	6230	+	9
Fatty acids	Synechocystis sp. 6803	4104	_	10
Ethylene	Synechocystis sp. 6803	3800	_	11
Mannitol	Synechococcus sp. 7002	3819	_	12

Isobutanol	S. elongatus 7942	3125	+	9
Lactic acid	Synechocystis sp. 6803	2488	+	13
1-Butanol	S. elongatus 7942	1403	+	14
3-Hydroxybutyrate	Synechocystis sp. 6803	1058	+	15
2-Methyl-1-butanol	S. elongatus 7942	694	+	16
1,2-Propanediol	S. elongatus 7942	625	+	17
Acetone	Synechocystis sp. 6803	375	-	18
Isopropanol	S. elongatus 7942	123	+	19
Alka(e)nes	Synechocystis sp. 6803	108	+	20
Fatty alcohols	Synechocystis sp. 6803	0.5	_	21

*See the references in the last part of the Supplementary materials.

Strains	Genotype	Source
S. elongatus strains		
PCC 7942	Wild type	ATCC
SE01	P_{psbA2} isp $S_{Pm.*}$ integrated at NSII	This work
SE02	P_{psbA2} isp S_{Pt} integrated at NSII	This work
SE03	P_{psbA2} isp $S_{P.d.}$ integrated at NSII	This work
SE04	P_{psbA2} isp $S_{E.g.}$ integrated at NSII	This work
SE05	P_{psbA2} isp $S_{P.a.}$ integrated at NSII	This work
SE06	P_{psbA2} isp $S_{P.c.}$ integrated at NSII	This work
SE07	$P_{\text{trc}} ispS_{Pa.}$ integrated at NSII	This work
SE08	$P_{\text{trc}} ispS_{E.g.}$ integrated at NSII	This work
SE09	$P_{\rm trc}$ isp $S_{P.m.*}$ integrated at NSII	This work
SE10	$P_{\rm cpc}$ isp $S_{P.a.*}$ integrated at NSII	This work
SE11	$P_{\rm cpc}$ isp $S_{E.g.*}$ integrated at NSII	This work
SE12	$P_{\text{trc}} ispS_{Pa.*}$ integrated at NSII	This work
SE13	$P_{\text{trc}} ispS_{E.g.*}$ integrated at NSII	This work
SE14	$P_{\text{trc}} ispS_{Pc.}$ integrated at NSII	This work
SE15	$P_{\text{trc}} ispS_{Pc.*}$ integrated at NSII	This work
SE16	$P_{\rm cpc}$ isp $S_{P.m.*}$ integrated at NSII	This work
SE17	$P_{\rm cpc}$ isp $S_{P.a.}$ integrated at NSII	This work
SE18	$P_{\rm cpc}$ isp $S_{P.c.}$ integrated at NSII	This work
SE19	$P_{\rm cpc}$ isp $S_{E.g.}$ integrated at NSII	This work
SE20	$P_{\rm cpc}$ isp $S_{P.c.*}$ integrated at NSII	This work
SE07-His	$P_{\rm trc}$ His-tagged <i>ispS_{P.a.}</i> integrated at NSII	This work
SE08-His	P_{trc} His-tagged <i>ispS_{E.g.}</i> integrated at NSII	This work
SE09-His	$P_{\rm trc}$ His-tagged $ispS_{Pm.*}$ integrated at NSII	This work
SE10-His	$P_{\rm cpc}$ His-tagged $ispS_{P.a.*}$ integrated at NSII	This work
SE11-His	$P_{\rm cpc}$ His-tagged $ispS_{E.g.*}$ integrated at NSII	This work
SE12-His	$P_{\rm trc}$ His-tagged $ispS_{Pa.*}$ integrated at NSII	This work
SE13-His	P_{trc} His- tagged $ispS_{E,e,*}$ integrated at NSII	This work

Table S6. Strains and plasmids.

SE23	$P_{\text{trc}} ispS_{E.g.*} dxs$ integrated at NSII	This work
SE24	$P_{\text{trc}} ispS_{E.g.*} idi_{S.e.}$ integrated at NSII	This work
SE25	$P_{\text{trc}} ispS_{E.g.*} idi_{H.p.}$ integrated at NSII	This work
SE26	$P_{\text{trc}} ispS_{E.g.*} idi_{B.s.}$ integrated at NSII	This work
SE27	$P_{\text{trc}} ispS_{E.g.*} idi_{S.c.}$ integrated at NSII	This work
SE28	$P_{\text{trc}} ispS_{E.g.*} idi_{S.c.} dxs$ integrated at NSII	This work
SE29	$P_{\rm cpc}$ isp $S_{P.a.*}$ dxs integrated at NSII	This work
SE30	$P_{\rm cpc}$ ispS _{P.a.*} idi _{S.c.} integrated at NSII	This work
SE31	$P_{\rm cpc}$ isp $S_{P.a.*}$ idi _{S.c.} , dxs integrated at NSII	This work
SE32	P_{trc} <i>idi</i> -GGGS- <i>ispS</i> _{E.g.*} <i>dxs</i> integrated at NSII	This work
SE33	P_{trc} isp $S_{E.g.}$ *-GGGS- <i>idi</i> dxs integrated at NSII	This work
SE34	$P_{\rm cpc}$ idi-GGGS-ispS _{P.a.*} dxs integrated at NSII	This work
SE35	P _{cpc} ispS _{P.a.*} -GGGS-idi dxs integrated at NSII	This work
SE36	$P_{cpc}idi$ -GSGGGGS- <i>ispS_{P.a.*} dxs</i> integrated at NSII	This work
SE37	$P_{cpc}idi$ -GSGEAAAK- <i>ispS</i> _{P.a.*} dxs integrated at NSII	This work
SE38	$P_{cpc}idi$ -GSG(EAAAK) ₂ -ispS _{P.a.*} dxs integrated at NSII	This work
SE40	P_{trc} isp $S_{E.g.*}$ ispD integrated at NSII	This work
SE41	$P_{\text{trc}} ispS_{E,g,*} ispF$ integrated at NSII	This work
SE42	P_{trc} isp $S_{E,g,*}$ isp D isp F integrated at NSII	This work
SE43	P_{trc} isp $S_{E,g,*}$ idi dxs integrated at NSII	This work
	$P_{\text{tac}}ispD$ is pF integrated at NSI	
SE51	P_{trc} <i>idi</i> -GGGS- <i>ispS</i> _{E.g.*} <i>dxs</i> integrated at NSII	This work
	$P_{\text{tac}}ispG_{S.e.}$ integrated at NSIII	
SE52	P_{trc} <i>idi</i> -GGGS- <i>ispS</i> _{E.g.*} <i>dxs</i> integrated at NSII	This work
	P_{tac} isp $G_{T.e.}$ integrated at NSIII	
SE53	P _{cpc} <i>idi</i> -GGGS- <i>ispS_{P.a.*}</i> dxs integrated at NSII	This work
	$P_{\rm cpc}$ isp $G_{S.e.}$ integrated at NSIII	
SE54	$P_{\rm cpc}$ <i>idi</i> -GGGS- <i>ispS</i> _{P.a.*} dxs integrated at NSII	
	$P_{\rm cpc}$ isp $G_{T.e.}$ integrated at NSIII	
Plasmids		
pBluescript KS II (+)	Amp^{r} ; ColE1 ori; P_{T7} MCS	Agilent
		Technologies
pCL1920	Spec ^r ; SC101 ori;	Ref. ²²
pMMB66EH	$Amp^{r}; P_{tac}$	ATCC
pSE01	Spec ^r ; NSII targeting vector; ColE1 ori;	This work
pSE02	Spec ^r ; NSII targeting; P_{psbA2}	This work
pSE03	Spec ^r ; NSII targeting ; P_{cpc}	This work
pSE04	Spec ^r ; NSII targeting ; P_{trc}	This work
pSE05	Spec ^r ; NSII targeting ; P_{cpc} ; containing poly-His tag	This work
pSE06	Spec ^r ; NSII targeting ; P_{trc} ; containing poly-His tag	This work
pSE07	Spec ^r ; NSII targeting ; P_{psbA2} isp $S_{Pm.*}$	This work
pSE08	Spec ^r ; NSII targeting ; P_{psbA2} isp S_{Pt} .	This work
pSE09	Spec ^r ; NSII targeting ; P_{psbA2} isp S_{Pd}	This work
pSE10	Spec ^r ; NSII targeting; P_{nsbA2} ispS _{E.e.}	This work
-		

pSE11	Spec ^r ; NSII targeting ; P_{psbA2} isp S_{Pa} .	This work
pSE12	Spec ^r ; NSII targeting ; P_{psbA2} isp $S_{Pc.}$	This work
pSE13	Spec ^r ; NSII targeting ; P_{cpc} isp $S_{Pm.*}$	This work
pSE14	Spec ^r ; NSII targeting ; P_{cpc} isp $S_{P.a.}$	This work
pSE15	Spec ^r ; NSII targeting ; P_{cpc} isp $S_{P.c.}$	This work
pSE16	Spec ^r ; NSII targeting ; P_{cpc} isp $S_{E.g.}$	This work
pSE17	Spec ^r ; NSII targeting ; P_{cpc} isp $S_{Pc.*}$	This work
pSE18	Spec ^r ; NSII targeting ; P_{trc} isp $S_{P.a.}$	This work
pSE19	Spec ^r ; NSII targeting ; $P_{trc} ispS_{E.g.}$	This work
pSE20	Spec ^r ; NSII targeting ; P_{trc} isp $S_{P.c.}$	This work
pSE21	Spec ^r ; NSII targeting ; $P_{trc} ispS_{p.c.*}$	This work
pSE22	Spec ^r ; NSII targeting ; <i>P</i> _{trc} <i>ispS</i> _{<i>p.m.</i>*}	This work
pSE23	Spec ^r ; NSII targeting ; $P_{cpc} ispS_{P.a.*}$	This work
pSE24	Spec ^r ; NSII targeting ; $P_{cpc} ispS_{E.g.*}$	This work
pSE25	Spec ^r ; NSII targeting ; <i>P</i> _{trc} <i>ispS_{P.a.*}</i>	This work
pSE26	Spec ^r ; NSII targeting ; $P_{trc} ispS_{E.g.*}$	This work
pSE27	Spec ^r ; NSII targeting ; <i>P</i> _{cpc} His-tagged- <i>ispS</i> _{P.a.*}	This work
pSE28	Spec ^r ; NSII targeting ; P_{cpc} His-tagged- <i>ispS_{E.g.*}</i>	This work
pSE29	Spec ^r ; NSII targeting ; <i>P</i> _{trc} His-tagged- <i>ispS</i> _{<i>P.m.</i>*}	This work
pSE30	Spec ^r ; NSII targeting ; P_{trc} His-tagged- <i>ispS_{P.a.}</i>	This work
pSE31	Spec ^r ; NSII targeting ; P_{trc} His-tagged- <i>ispS_{E.g.}</i>	This work
pSE32	Spec ^r ; NSII targeting ; <i>P</i> _{trc} His-tagged- <i>ispS_{P.a.*}</i>	This work
pSE33	Spec ^r ; NSII targeting ; P_{trc} His-tagged- <i>ispS_{E.g.*}</i>	This work
pSE34	Spec ^r ; NSII targeting ; $P_{trc} ispS_{E.g.*} dxs$	This work
pSE35	Spec ^r ; NSII targeting ; $P_{trc} ispS_{E.g.*} idi_{S.e.}$	This work
pSE36	Spec ^r ; NSII targeting ; $P_{trc} ispS_{E.g.*} idi_{H.p.}$	This work
pSE37	Spec ^r ; NSII targeting ; $P_{trc} ispS_{E.g.*} idi_{B.a.}$	This work
pSE38	Spec ^r ; NSII targeting ; $P_{trc} ispS_{E.g.*} idi_{S.c.}$	This work
pSE39	Spec ^r ; NSII targeting ; $P_{trc} ispS_{E.g.*} idi_{S.c.} dxs$	This work
pSE40	Spec ^r ; NSII targeting ; P_{cpc} isp $S_{P.a.*}$ dxs	This work
pSE41	Spec ^r ; NSII targeting ; $P_{cpc} ispS_{P.a.*} idi_{S.c.}$	This work
pSE42	Spec ^r ; NSII targeting ; $P_{cpc} ispS_{P.a.*} idi_{S.c.} dxs$	This work
pSE43	Spec ^r ; NSII targeting ; P_{trc} <i>idi</i> -GGGS- <i>ispS</i> _{<i>E.g.</i>*} <i>dxs</i> _{<i>S.e.</i>}	This work
pSE44	Spec ^r ; NSII targeting ; $P_{trc} ispS_{E.g.*}$ -GGGS- <i>idi</i> $dxs_{S.e.}$	This work
pSE45	Spec ^r ; NSII targeting ; <i>P</i> _{cpc} <i>idi</i> -GGGS- <i>ispS</i> _{P.a.*} <i>dxs</i> _{S.e.}	This work
pSE46	Spec ^r ; NSII targeting ; <i>P</i> _{cpc} <i>ispS</i> _{<i>P.a.</i>*} -GGGS- <i>idi dxs</i> _{<i>S.e.</i>}	This work
pSE47	Spec ^r ; NSII targeting ; <i>P</i> _{cpc} <i>idi</i> -GSGGGGS- <i>ispS</i> _{P.a.*} <i>dxs</i> _{S.e.}	This work
pSE48	Spec ^r ; NSII targeting ; P_{cpc} <i>idi</i> -GSGEAAAK- <i>ispS_{Pa.*}</i> $dxs_{S.e.}$	This work
pSE49	Spec ^r ; NSII targeting ; <i>P</i> _{cpc} <i>idi</i> -GSG(EAAAK) ₂ - <i>ispS</i> _{P.a.*} <i>dxs</i> _{S.e.}	This work
pSE53	Kan ^r ; NSIII targeting vector; SC101 ori;	This work
pSE54	Kan ^r ; NSIII targeting ; P_{tac} ;	This work
pSE55	Kan ^r ; NSIII targeting ; P_{cpc} ;	This work
pSE56	Kan ^r ; NSIII targeting ; P_{tac} isp $G_{T.e.}$	This work
pSE57	Kan ^r ; NSIII targeting ; P_{tac} isp $G_{S.e.}$	This work

pSE58	Kan ^r ; NSIII targeting ; P_{cpc} isp $G_{S.e.}$	This work
pSE59	Kan ^r ; NSIII targeting ; P_{cpc} isp $G_{T.e.}$	This work
pET28a- <i>dxr_{E.c.}</i>	Kan ^r ; ColE1 ori; $P_{T7} dxr_{E.c.}$	This work
pET28a- <i>idi_{s.c.}</i>	Kan ^r ; ColE1 ori; P_{T7} <i>idi</i> _{S.c.}	This work
pET28a- <i>ispS_{P.a.*}</i>	Kan ^r ; ColE1 ori; P_{T7} isp $S_{Pa.*}$	This work
pET28a-	Kan ^r ; ColE1 ori; <i>P</i> _{T7} <i>idi</i> -GGGS- <i>ispS</i> _{P.a.*}	This work
idi-GGGS-ispS _{P.a.*}		
pET28a-	Kan ^r ; ColE1 ori; <i>P</i> _{T7} <i>ispS_{P.a.*}-GGGS-idi</i>	This work
ispS _{P.a.} *-GGGS-idi		
pET28a- <i>ispS[*]_{E.g.}</i>	Kan ^r ; ColE1 ori; P_{T7} isp $S_{E.g.*}$	This work
· · · · · · · · · · · · · · · · · · ·		

 Table S7. Oligonucleotides used in this study.

Name	Sequence $5' \rightarrow 3'$	Used for Plasmid
GX1	AGAGAGCTCGAGAACCGTTCCTGCGCGATCGCTCTTA	pSE01
GX2	AGAGAGGGTACCTAAGCGGGCCACGGCAGCGAAAGGG	pSE01
GX3	AGAGAGGAATTCCCAGCTTGGCTGTTTTGGCGG	pSE01
GX4	AGAGAGAAGCTTAAGGCCCAGTCTTTCGACTGA	pSE01
GX5	AGAGAGAAGCTTAAAAAATTGAAAAAGTGTTTC	pSE01
GX6	AGAGAGCTCGAGATCGATTTTCGTTCGTGAATAC	pSE01
GX7	AGAGAGGAGCTCCGATCGCTTTGGGACTTGGAACGGT	pSE01
GX8	AGAGAGGGATCCAAATCACCAGCTGAAACGGTGAAGT	pSE01
GX9	AGAGAGGGATCCATCAGAATCCTTGCCCAGATGC	pSE02
GX10	AGAGAGGAATTCAGAGAGCATATGGTTATAATTCCTTATGTATTTG	pSE02
GX11	AGAGAGGGATCCGTTATAAAATAAACTTAACAAATC	pSE03, pSE05
GX12	AGAGAGGAATTCAGAGAGCATATGATTAATCTCCTACTTGACTTTATG	pSE03
GX13	AGAGAGGGATCCGGTTTTCACCGTCATCACCGAAAC	pSE04, pSE06
GX14	AGAGAGGAATTCAGAGAGCATATGCTGTTTCCTGTGTGAAATTG	pSE04
GX15	AGAGGAATTCAGAGCATATGGCTGTGGTGATGATGGTGATGGCTGCTGCCCATTGAATTA	pSE05
	ATCTCCTACTTGACTTTATG	
GX16	AGAGGAATTCAGAGCATATGGCTGTGGTGATGATGGTGATGGCTGCTGCCCATGGTCTGT	pSE06
	TTCCTGTGTGAAATTG	
GX17	AGAGAGTGTACAAAGAAGGAGATATACCATGCATCTCAGCGAAATTACC	pSE34, pSE40
GX18	AGAGAGGAATTCAGAGAGACTAGTTTAAGCCGAAGCAGCACCAATC	pSE34, pSE40
GX19	AGAGAGTGTACAAAGAAGGAGATATACCATGAACTTCCCGATCGCAGCTG	pSE35
GX20	AGAGAGGAATTCAGAGAGACTAGTTTAGCAGGGTCGCAAGACCCCCGG	pSE35
GX21	AGAGAGTGTACAAAGAAGGAGATATACCATGACTCGAGCAGAACGAAAAAG	pSE37
GX22	AGAGAGGAATTCAGAGAGACTAGTTTATCGCACACTATAGCTTGATG	pSE37

GX23	AGAGAGTGTACAAAGAAGGAGATATACCATGACTGCCGACAACAATAGTATGC	pSE38
GX24	AGAGAGGAATTCAGAGAGACTAGTTTATAGCATTCTATGAATTTGCC	pSE38
GX25	AGAGAGACTAGTAAGAAGGAGATATACCATGCATCTCAGCGAAATTACC	pSE39, pSE42, pSE43, pSE44,
		pSE45, pSE46
GX26	AGAGAGGAATTCTTAAGCCGAAGCAGCACCAATC	pSE39, pSE42, pSE43, pSE44,
		pSE45, pSE46
GX27	AGAGCATATGACTGCCGACAACAATAGTATGC	pSE43, pSE45
GX28	TAGCATTCTATGAATTTGCCTGTC	pSE43, pSE45
GX29	GACAGGCAAATTCATAGAATGCTAGGCGGTGGCTCCATGGAAGGACGACGGAGCGCC	pSE43
GX30	AGAGAGTGTACATTACGCGGCTGGACTAATCGG	pSE43
GX31	AGAGCATATGGAAGGACGACGGAGCGCC	pSE44
GX32	GCATACTATTGTTGTCGGCAGTCATGGAGCCACCGCCGCGGCTGGACTAATCGGTTTAA	pSE44
	TG	
GX33	ATGACTGCCGACAACAATAGTATGC	pSE44, pSE46
GX34	AGAGAGTGTACATTATAGCATTCTATGAATTTGCC	pSE44, pSE46
GX35	GACAGGCAAATTCATAGAATGCTAGGCGGTGGCTCCATGCGATGTTCTGTTAGTACC	pSE45
GX36	AGAGAGTGTACATTAACGCTCAAAGGGTAAAATGG	pSE45
GX37	AGAGAGCATATGCGATGTTCTGTTAGTACC	pSE46
GX38	GCATACTATTGTTGTCGGCAGTCATGGAGCCACCGCCACGCTCAAAGGGTAAAATGGGT	pSE46
	TC	
GX39	GACAGGCAAATTCATAGAATGCTAGGCTCCGGTGGCGGTGGCAGTATGCGATGTTCTGTT	pSE47
	AGTACC	
GX40	GACAGGCAAATTCATAGAATGCTAGGCTCCGGTGAAGCCGCTGCCAAAATGCGATGTTC	pSE48
	TGTTAGTACC	
GX41	GACAGGCAAATTCATAGAATGCTAGGCTCCGGTGAAGCCGCTGCCAAAGAAGCCGCTG	pSE49
	CCAAAATGCGATGTTCTGTTAGTACC	

AGAGAGGTCGACGGCGTTTTCTGCTACATGGGCCG	pSE53
AGAGAGGGATCCAGAGAGGGTACCTTAGCCGTTGATTGCAGGTGCAGTC	pSE53
AGAGAGAGATCTTTAAGTCTCTATCTCTGCAGGAG	pSE53
AGAGAGGAGCTCGGAAGTCCAGCGCAATCAGCGG	pSE53
AGAGAGGCGGCCGCTTCGTGTCGCTCAAGGCGCAC	pSE54
AGAGAGGGATCCTGTTTCCTGTGTGAAATTGTTATC	pSE54
AGAGAGGCGGCCGCGTTATAAAATAAACTTAACAAATC	pSE55
AGAGAGGGATCCAATCTCCTACTTGACTTTATG	pSE55
AGAGAGGGATCCATGCAGACCCTCTCCACCCCAGC	pSE57, pSE58
AGAGAGCCGCGGTTAGGCAATCGGTTCCGGTTC	pSE57, pSE58
AGAGAGCATATGAAGCAACTCACCATTCTG	pET28a- $dxr_{E.c.}$
AGAGAGGTCGACTTAGCTTGCGAGACGCATCACC	pET28a-dxr _{E.c.}
AGAGCATATGACTGCCGACAACAATAGTATGC	pET28a- <i>idi_{S.c.}</i>
AGAGAGGGATCCTTATAGCATTCTATGAATTTGC	pET28a- <i>idi_{S.c.}</i>
AGAGAGCATATGCGATGTTCTGTTAGTACC	pET28a- <i>ispS_{P.a.*}</i>
AGAGAGGGATCCTTAACGCTCAAAGGGTAAAATGG	pET28a- <i>ispS_{P.a.*}</i>
AGAGCATATGGAAGGACGACGGAGCGCC	pET28a- $ispS^*_{E.g.}$
AGAGGGATCCTTACGCGGCTGGACTAATC	pET28a- $ispS^*_{E.g.}$
GTGATGGTGTGCTTGTTGATAGC	NSII validate
ATGCTGTGGAGTTATCTTTTGGC	NSII validate
CGGCTGATGCGGAACAGCTAG	NSIII validate
GATGAGAAATTCGAGGTTCTTGC	NSIII validate
	AGAGAGGTCGACGGCGTTTTCTGCTACATGGGCCG AGAGAGGGATCCAGAGAGGGTACCTTAGCCGTTGATTGCAGGTGCAGTC AGAGAGGAGATCTTTAAGTCTCTATCTCTGCAGGAG AGAGAGGAGCTCGGAAGTCCAGCGCAATCAGCGG AGAGAGGGGGCCGCCTTCGTGTCGCTCAAGGCGCAC AGAGAGGGGGCCGCCGCTTCGTGTCGCTCAAGGCGCAC AGAGAGGGGATCCTGTTTCCTGTGTGAAATTGTTATC AGAGAGGGGCGCCGCGTTATAAAATAAA

Metabolites	Extracellular concentration (µM)			Limit of detection
	WT	SE52	SE54	(µM)
Pyruvate	NA ^b	NA	NA	1.5
Lactate	NA	NA	NA	3.3
Fumarate	NA	NA	NA	2.0
Succinate	6.1 ± 0.1	5.7 ± 0.2	6.0 ± 0.1	1.5
Malate	NA	NA	NA	2.0
α-Ketoglutarate	NA	NA	NA	2.0
Citrate	13.7 ± 0.3	14.2 ± 0.4	14.8 ± 0.2	1.1
Isocitrate	NA	NA	NA	1.7
Glycolate	NA	8.8 ± 0.1	9.4 ± 0.3	5.3

Table S8. Extracellular concentrations of metabolites quantified by GC-MS*

^{*}For analysis of extracellular metabolites, culture samples (1.5 mL) were harvested by centrifugation. The supernatant was dried in a vacuum centrifuge at room temperature. After redissolved with 50 μ L of 20 mg mL⁻¹ methoxyamine hydrochloride in pyridine, the sample was incubated at 30 °C for 60 min and then derivatized at 70 °C for 30 min in 50 μ L pyridine and 50 μ L *N*-methyl-*N*-[tert-butyldimethylsilyl] trifluoroacetamide (Sigma). The GC-MS analysis was performed as described previously.²³ NA, not detectable.

Fig. S1. Effect of treatment with DBMIB and DCMU on isoprene production of strains SE32 and SE52. DCMU (10 μ M) or DBMIB (10 μ M) was added to the shake flask cultures when OD₇₃₀ reaches about 0.8, and then the cells were cultivated at 30 °C for 24 h. Data are normalized to the isoprene production in the absence of DBMIB or DCMU. Error bars indicate s.d. (*n* = 3).

Fig. S2. Intracellular glycogen contents in *S. elongatus* wild type, SE52, and SE53 strains during long-term continuous production of isoprene. Samples were taken at 3, 6, and 9 d. Glycogen content was measured as described previously.²⁴ Error bars indicate s.d. (n = 3).

References

- 1 R. E. Reinsvold, R. E. Jinkerson, R. Radakovits, M. C. Posewitz and C. Basu, J. Plant Physiol., 2011, 168, 848-852.
- 2 F. K. Bentley, J. G. Garcia-Cerdan, H.-C. Chen and A. Melis, *Bioenerg. Res.*, 2013, 6, 917-929.
- 3 C. Halfmann, L. Gu, W. Gibbons and R. Zhou, *Appl. Microbiol. Biotechnol.*, 2014, **98**, 9869-9877.
- 4 F. K. Davies, V. H. Work, A. S. Beliaev and M. C. Posewitz, *Front. Bioeng. Biotechnol.*, 2014, **2**, 21-21.
- 5 F. K. Bentley and A. Melis, *Biotechnol. Bioeng.*, 2012, **109**, 100-109.
- 6 D. C. Ducat, J. A. Avelar-Rivas, J. C. Way and P. A. Silver, *Appl. Environ. Microbiol.*, 2012, **78**, 2660-2668.
- 7 J. W. K. Oliver, I. M. P. Machado, H. Yoneda and S. Atsumi, *Proc. Natl. Acad. Sci. USA*, 2013, **110**, 1249-1254.
- 8 Z. Gao, H. Zhao, Z. Li, X. Tan and X. Lu, *Energy Environ. Sci.*, 2012, 5, 9857-9865.
- 9 S. Atsumi, W. Higashide and J. C. Liao, Nat. Biotechnol., 2009, 27, 1177-1180.
- 10 X. Liu, J. Sheng and R. Curtiss, III, Proc. Natl. Acad. Sci. USA, 2011, 108, 6899-6904.
- 11 J. Ungerer, L. Tao, M. Davis, M. Ghirardi, P.-C. Maness and J. Yu, *Energy Environ. Sci.*, 2012, **5**, 8998-9006.
- 12 J. H. Jacobsen and N.-U. Frigaard, Metab. Eng., 2014, 21, 60-70.
- 13 S. A. Angermayr, A. D. van der Woude, D. Correddu, A. Vreugdenhil, V. Verrone and K. J. Hellingwerf, *Biotechnol Biofuels.*, 2014, 7.
- 14 E. I. Lan, S. Y. Ro and J. C. Liao, Energy Environ. Sci., 2013, 6, 2672-2681.

- 15 B. Wang, S. Pugh, D. R. Nielsen, W. Zhang and D. R. Meldrum, *Metab. Eng.*, 2013, 16, 68-77.
- 16 C. R. Shen and J. C. Liao, Energy Environ. Sci., 2012, 5, 9574-9583.
- 17 H. Li and J. C. Liao, Microbial Cell Factories, 2013, 12.
- 18 J. Zhou, H. Zhang, Y. Zhang, Y. Li and Y. Ma, Metab. Eng., 2012, 14, 394-400.
- 19 T. Kusakabe, T. Tatsuke, K. Tsuruno, Y. Hirokawa, S. Atsumi, J. C. Liao and T. Hanai, *Metab. Eng.*, 2013, **20**, 101-108.
- 20 W. Wang, X. Liu and X. Lu, Biotechnol Biofuels., 2013, 6.
- 21 X. Tan, L. Yao, Q. Gao, W. Wang, F. Qi and X. Lu, Metab. Eng., 2011, 13, 169-176.
- 22 C. G. Lerner and M. Inouye, Nucleic Acids Res., 1990, 18, 4631-4631.
- 23 L. Liu, L. Zhang, W. Tang, Y. Gu, Q. Hua, S. Yang, W. Jiang and C. Yang, *J. Bacteriol.*, 2012, **194**, 5413-5422.
- 24 D. Liu and C. Yang, J. Biol. Chem., 2014, 289, 2055-2071.