Electronic Supplementary Information (ESI)

Scalable Fabrication of Micron-Scale Graphene Nanomeshes

for High-Performance Supercapacitor Applications

Hyun-Kyung Kim, Seong-Min Bak, Suk Woo Lee, Myeong-Seong Kim, Byeongho Park, Su Chan Lee, Yeon Jun Choi, Seong Chan Jun, Joong Tark Han, Kyung-Wan Nam, Kyung Yoon ChungJian Wang, Jigang Zhou, Xiao-Qing Yang, Kwang Chul Roh, and Kwang-Bum Kim

SEM images of SnO₂-RGO, SnO₂-nanoperforated RGO via carbon catalytic gasification, and GNMs

Snapshot in situ TEM images were recorded (x4) at 100–350 °C; at approximately 350 °C, SnO_2 on RGO induced carbon decomposition to introduce nanopores on the RGO sheets. Scale bars, 10 nm

TG/DSC of P-graphene and SnO₂-RGO

Figure S4

Py-GC/MS. During the catalytic carbon gasification, CO and CO₂ release peaks were observed for P-graphene and SnO₂-RGO

TGA profiles of P-graphene, 7wt.% SnO₂-RGO, 11wt.% SnO₂-RGO, and 17wt.% SnO₂-RGO. The catalytic carbon decomposition temperature decreased with increasing amounts of SnO₂.

TEM image of P-graphene.

(a) Photographs showing scalable preparation of GNMs and (b) STEM images of GNMs

TEM image and FFT patterns of (I) non-perforated and (II) perforated areas on GNMs.

AFM image and height profile of P-graphene.

XRD patterns and TEM images of (a) Fe_3O_4 -RGO, (b) RuO_2 -RGO, and GNM nanosheets fabricated from Fe_3O_4 -RGO and RuO_2 -RGO.

C 1s XPS spectra of (a) SnO₂-RGO and (b) GNMs. The O/C ratio of SnO₂-RGO decreases remarkably during the preparation of GNMs, indicating the successful removal of most of the epoxide and hydroxyl functional groups.

Raman spectra and mapping images (30 μ m x 30 μ m) of P-graphene, GNMs, and H-GNMs. The differences in D/G ratio of P-graphene and NPG are clearly observed by color differences.

N₂ adsorption-desorption isotherm of P-graphene and GNMs.

(a) UV-vis absorption and fluorescence spectra and (b) PL spectra of P-graphene and GNM (0.01 mg/ml in ethanol/H₂O (1/1 v/v ratio)) Inset: digital images indicate blue and green PL emissions of P-graphene and GNM. Scale bar, 20 μ m.

Figure S15

Cyclic voltammogram for P-graphene. Compared with GNMs, P-graphene shows poor cyclic voltammetric behaviors.

Figure S16

Volumetric capacitance of GNMs (packing density: 0.54 g cm⁻¹) and P-graphene (packing density: 0.38 g cm⁻¹) electrodes.

Electrochemical properties of GNM electrodes in the three-electrode test using 1 M LiPF₆ in EC/DMC (1:1 v/v).

Figure S18

High-resolution XPS spectra of the N 1s region of NG.

(a) The overall morphology of a selected single N-GNM sheet; the vertical gray scale represents the optical density. (Scale bar, 1 μ m) (b) The color composite map was generated from the average OD image by combining individual component maps (Scale bar, 1 μ m) (c-j) using principal component analysis; the corresponding. (Scale bars, 1 μ m) (k) C and (l) N K-edge NEXAFS spectra were derived from the same regions.

Rate capabilities of P-graphene, GNMs and N-GNMs at various current densities between 1 and 20 A g^{-1} . The N-GNMs (specific capacitances of 255, 252, 248, 244 and 236 F g^{-1} at current densities of 1, 2, 5, 10 and 20 A g^{-1}) exhibit slightly enhanced specific capacitance and rate capability than GNMs electrode.

Table S1

Sample	Carbon	Oxygen	Nitrogen	Hydrogen
P-graphene	81.18	17.49	(*** 75)	1.33
NG	90.77	3.83	4.42	0.98
L-GNMs	81.14	18.01		0.85
N-(L)-GNMs	91.74	2.29	4.74	1.23
GNMs	80.37	18.36		1.27
N-GNMs	88.3	5.49	5.09	1.12
H-GNMs	78.64	19.85		1.51
N-(H)-GNMs	86.18	6.47	6.19	1.16

Elemental analysis of different oxidation and N states of N-doped P-graphene and N-doped GNMs