Electronic Supplementary Information

Chemically exfoliated transition metal dichalcogenide nanosheets-based wearable thermoelectric generators

Jin Young Oh, ^{a‡s} Ji Hoon Lee,^{b‡} Sun Woong Han,^{b‡} Soo Sang Chae, ^b Eun Jin Bae, ^c Young Hun Kang,^c Won Jin Choi,^{cl} Song Yun Cho,^c Jeong-O Lee,^c Hong Koo Baik,^{*b} and Tae II Lee^{*d}

^aResearch Institute of Iron and Steel Technology, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, Republic of Korea 120-749

^bDepartment of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, Republic of Korea 120-749

°Division of Advanced Materials, Korea Research Institute of Chemical Technology

(KRICT), Daejeon, 305-343, Republic of Korea

^dDepartment of BioNano Technology, Gachon University, Seongnam, Gyeonggi-Do 461-701,

Republic of Korea *E-mail: <u>t2.lee77@gachon.ac.kr</u>

[‡]The authors contributed equally to this work.

§Present address: Department of Chemical Engineering, Stanford University, California 94305, USA

Present address: Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA

Fig. S1. TEM images of chemically exfoliated WS_2 and $NbSe_2$ nanosheets.

Fig. S2. Film thickness and morphology for vacuum-filtrated and transferred TMDC films on a 300nm-thick SiO_2/Si substrate. SEM images showing cross-section of a) WS_2 and b) $NbSe_2$ films and the film morphology of c) WS_2 and d) $NbSe_2$ films.

Fig. S3. XPS spectra for chalcogenides in chemically exfoliated a) WS_2 and b) $NbSe_2$.

Fig. S4. The long-term stability of a single unit under the thermal stress ($\Delta 60 \text{ K}$).