

Environmental Science: Processes & Impacts

ARTICLE

Electronic Supplementary Information

ESI Fig. 1 Properties of dams and reservoirs worldwide with dam heights > 100 m and storage capacities > $20*10^9$ m³. The TGR and the Itaipú Reservoir have comparable magnitudes, are located in the sub-tropics, and have exceptionally low mean water residence times.^{142,43,44,45,46} Crossed and numbered points refer to ESI Table 1.

Environmental Science: Processes

& Impacts

ESI Table 1 Properties of selected dams and reservoirs worldwide with dam heights > 100 m and storage capacities > 20*10⁹ m³. The TGR and the Itaipú Reservoir have comparable magnitudes, are located in the sub-tropics, have exceptionally low mean water residence times (MWRT), and are polymictic. The TGR, however, is eutrophic and has by far the largest water level fluctuation. Numbers (No.) refer to ESI Fig. 1.

			Dam and Reservoir dimensions			Reservoir Classification						
No. Dam name	Country	Year	Dam height [m]	Res. vol. [10 ⁹ m ³]	Res. area [km²]	Ødepth [m]	MWRT [days]	Geographic	Trophic	Mixing	WLF [m]	References
1 Atatürk	Turkey	1992	169	49	817	60	838 long	37°N sub-tropical	eutrophic	n.a.	n.a.	41,43,50
2 Bakun	Malaysia	2011	205	44	695	63	362 intermediate	3°N tropical	n.a.	n.a.	n.a.	41,44,46
3 Hoover	USA	1935	223	37	635	58	1035 long	36°N sub-tropical	mesotrophic	monomictic	7	41,43,47
4 Itaipú	Brazil/Paraguay	1983	196	29	1350	21	33 intermediate	25°S sub-tropical	oligotrophic	polymictic	1	41,43,44,45,48
5 Kariba	Zimbabwe/Zambia	1959	128	185	5540	33	1367 long	17°N tropical	mesotrophic	monomictic	3	41,43,44
6 La Grande 2	Canada	1977	168	62	2835	22	428 long	54°N moderate	oligotrophic	dimictic	9	41,43,44
7 Manicouagan	Canada	1968	214	142	1940	73	2961 long	51°N moderate	oligotrophic	monomictic	6	41,43,44
8 Nuozhadu	China	2014	262	24	320	74	159 intermediate	23°N tropical	n.a.	n.a.	n.a.	39,41
9 Three Gorges	China	2003	175	39	1084	36	30 intermediate	31°N sub-tropical	eutrophic	polymictic	30	41,43,49
10 Volta	Ghana	1965	134	148	8500	17	1452 long	6°N tropical	eutrophic	polymictic	3	41,43,44

ARTICLE

ESI Table 2 Sensors installed on the MINIBAT and their specifications.

Parameter	Producer	Principle	Measuring range	Accuracy	Resolution	Response time
Pressure	ADM Elektronik	piezo-resistive	0 200 dbar	±0.1 dBar	0.005 dbar	0.04 s
O ₂	ADM Elektronik	Potentiometric (Clark electrode)	0 - 150% sat	±2% sat	0.02% sat.	3 s (63%)
Temperature	ADM Elektronik	Pt 100	-2 - 38°C	±0.01°C	0.001°C	0.12 s
El. conductivity	ADM Elektronik	7-pole-cell	0 - 6 mS/cm	$\pm 2~\mu S/cm$	0.1 µS/cm	0.05 s
рН	AMT GmbH	Potentiometric (Ag/AgCl)	0 - 14 pH	0.02 pH	0.02 pH	1 s (63%)
H_2S^*	AMT GmbH	Amperometric	0 - 10 mg/L	±3%	0.03 mg/L	<3 s
Chlorophyll a**	Turner designs	Fluorescence (exc. 465 nm / fl. 696 nm)	0.03 - 500 μg/L		0.01 μg/L	1 s
CDOM***	Turner designs	Fluorescence (exc. 325 nm / fl. 470 nm)	0.15 - 1250 ppb _{QS}	±5%	0.01 ppb _{QS}	1 s
Turbidity	Seapoint sensors, Inc.	Mie backscattering	0 - 750 FTU	±2%	< 0.001%	0.1 s
PAR (400-700 nm)	LI-COR®	Photon flux density	$0 - 10 \text{ mmol}/(\text{s}*\text{m}^2)$	±5%	$0.01 \; \mu mol/(s^*m^2)$	10 µs

*The H₂S sensor did not operate stable and was not used during data evaluation. **Calibrated against algal monoculture of Skeletonema costatum. ***Calibrated against Quinine Sulfate in 0.05 M H₂SO₄.

Environ. Sci.: Processes Impacts, 2015, 00, 1-3 | 16

Environmental Science: Processes & Impacts

ARTICLE

ESI - Notes and references

- 41 L. Berggren and L. Wallmann, MSc. Thesis, Lund University, 2012.
- 42 Chinese National Committee on Large Dams, Dam information—Dam Projects—Nuozhadu Hydropower Project, http://www.chincold.org.cn, (accessed 07 November, 2014).
- 43 P. Gong and J. Wan, *Hydropower*, 2006, 1465-1471.
- 44 International Commission on Large Dams, *World Register of Dams*, http://www.icold-cigb.org, (accessed 05 March, 2014).
- 45 World Bank, *Malaysia Power Sector Issues and Options*, Report No.6466-MA, 1987.
- 46 B. Lehner, C. Reidy Liermann, C. Revenga, C. Vörösmarty, B. Balazs Fekete, P. Crouzet, P. Döll, M. Endejan, K. Frenken, J. Magome, C. Nilsson, J. Robertson, R. Rödel, N. Sindorf and D. Wisser, *Global Reservoir and Dam database*. Version 1.1, 2011.
- 47 International Lake Environment Committee Foundation, *World Lake Database*, url: http://wldb.ilec.or.jp/, (accessed 13 November, 2014).
- 48 R. Ribeiro Filho, M. Petrere Junior, S. Benassi and J. Pereira, Braz. J. Biol., 2011, 71(4), 889-902.
- 49 B. Sovacool and L. Bulan, Energy Policy, 2011, 39, 4842-4859.
- 50 Summit Technologies, Inc., *Lake Mead Water Database*, http://lakemead.water-data.com/, (accessed 13 November, 2014).
- 51 M. Thomaz, A. Pagioro, M. Bini and J. Murphy, *Hydrobiologia*, 2006, **570**, 53-59.
- 52 Y. Xu, Q. Cai, X. Han, M. Shao and R. Liu, *Environ. Monit.* Assess., 2010, **169(1-4)**, 237-248.
- 53 M. Yazgan, B. Armağan and M. Yeşilnacar, International Symposium on water resources and environmental impact assessment, Istanbul, 2001.