Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2015

Supplementary Data for

Occurrence, Distribution and Risks of Antibiotics in Urban Surface

Water in Beijing, China

Wenhui Li^a, Lihong Gao^a, Yali Shi^b, Jiemin Liu^{a,*}, Yaqi Cai^{b,*}

^aSchool of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;

^bState Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China

*Corresponding author

Tel: +86 10 62849182; fax: +86 10 62849182;E-mail: caiyaqi@rcees.ac.cn

Tel.: +86 010 62333751; E-mail: liujm@ustb.edu.cn

Captions:

Table S1 Physicochemical characteristics of the target antibiotics

 Table S2 Experimental conditions of electrospray tandem mass spectrometry

Table S3 Correlation coefficients (r²), linear range, recoveries (%) and limits of detection

(LODs, S/N=3) of 22 antibiotics

Table S4 Usage of some antibiotics in China in 2013.

Table S5 Acute toxicity data for selected antibiotics on aquatic organisms.

Table S6 Chronic toxicity data for selected antibiotics on aquatic organisms.

Fig. S1 Concentration-percent composition of antibiotics in 36 surface water samples

Fig. S2 Locations of animal farms in urban Beijing

Fig. S3 Distribution map of risk quotients (HQs) of OFL, SMX, ERY, and CIP in the surface water of Beijing.

Analytes	Structure	MW (g/mol)	S _W (mg/L)	рКа	Log Kow
Norfloxacin (NOR)	H ₅ C ₂ N COOH	319.3	540 ¹	6.27; 8.3 ²	-1.03 ³
Ciprofloxacin (CIP)	F COOH	331.3	700 ¹	5.90; 8.89 ²	-0.73 ³
Difloxacin (DIF)	H ₃ C	399.4	n.a.	5.66; 7.24 ²	2.349
Enrofloxacin (ENR)	H ₅ C ₂	359.4	849.7 ⁴	5.86; 8.24 ²	1.14
Fleroxacin (FLE)	H ₃ C ^N	369.4	na	5.46; 8.00 ²	1.085
Ofloxacin (OFL)		361.3	230 ¹	5.97; 8.286	-0.70 ³
Lomefloxacin (LOM)	HN F C ₂ H ₅	351.4	n.a.	6.56; 8.47 ²	-0.35
Sarafloxacin (SAR)		385.4	100	6.0; 8.66	0.847

Table S1 Physicochemical characteristics of the test antibiotics

Sulfathiazole	5-7	277.3	373 ⁸	2.08; 7.07 ²	0.728
(STZ)	HN				
	H ₂ NS=O				
Sulfamethoxazole	N-0	253.3	13824	1.83; 5.57 ²	-0.433
(SMX)	HN CH3				
Sulfisoxazole	H3C CH3	267.3	3008	4.79	1.018
(SIA)	T.M				
Sulfapyridine		249.3	270	2.90; 8.54 ²	-1.183
(SPD)	HNNN				
	H ₂ N-S=O U				
Sulfadimethoxine	ocH3	332.3	3434	2.4; 6.2 ²	1.634
(SDM)	A and				
Sulfamethazine	CH3	278.3	15004	2.28; 7.42 ²	0.894
(SMZ)	N				
	H ₂ N-CH ₃ S=0				
Sulfadiazine	N	250.3	77	2.10; 6.28 ²	-0.09210
(SDZ)	HNNN				
	H ₂ NS=O				
Sulfamerazine	N	286.3	n.a.	2.17; 6.77 ²	0.215
(SMR)	HN HN CH3				
	H ₂ N-S=O				
Sulfamonomethoxine	OCH3	280.0	403011	2.0; 6.0 ¹¹	0.7^{12}
(SMM)	- n				
	5				

The table includes information on the hydrophobicity (log Kow); aqueous solubility (Sw) at neutral pH; acid-base reactivity (pKa); n.a.: not available.

Table S2 Experimental conditions of electrospray tandem mass spectrometry

Analytes	Parent	Daughter	Declustering	Entrance	Collision	Collision	Collision cell
	ion	ion	Potential/	Potential/	cellent	Energy/	exit potential/
	(m/z)	(m/z)	V	V	potential/V	eV	V
NOR	320.1	276.3	45	8.0	11	23	10
		302.2ª	40	8.0	11	28	10
CIP	332.1	231.1	58	4.5	14	49	9.5
		314.3 a	55	5.0	11	28	6.0
DIF	400.0	299.1	60	4.0	13	41	12
		356.2 ^a	60	4.0	13	28	13
ENR	360.0	245.2	55	5.0	12	39	9.5
		316.2 ª	58	5.0	11	28	11
FLE	370.0	269.2	45	4.5	20	34	10
		326.2 ª	45	4.5	12	27	12
OFL	362.2	261.2	55	5.0	24	38	10
		318.2 ª	55	5.0	12	27	11
LOM	352.0	265.2 ª	53	5.0	12	34	10
		308.2	55	4.0	37	32	12
SAR	386.0	299.2	65	4.5	13	37	6.5
		368.2 ª	60	4.5	14	31	7.0
NOR-d ₅	325.3	281.4	50	8.5	11	23	6.0
		307.3 ^a	40	7.5	11	27	6.5
$OFL-d_3$	365.2	261.2	55	6	12	39	10
		321.2 ª	55	6	12	28	11.5
SAR-d ₈	394.2	350.3	60	6	13	28	12
		376.2 ^a	59	6	12	33	14
STZ	256.0	108.0	43	4.5	10	36	4.5
		156.0 ^a	42	4.2	10	21	4.5
SMX	254.0	156.0 ^a	45	4.0	9	23	5.2
		160.1	47	4.5	9	27	6.0
SIA	268.1	108.0	46	4.5	12	37	4.5
		156.0 ^a	46	4.5	9	21	5.0
SPD	250.1	108.0	38	7.0	11	36	4.5
		156.0 ^a	41	4.7	9	24	5.5
SDM	311.2	108.0	55	4.5	12	41	4.5
		156.1 ^a	57	4.0	12	30	6.0
SMZ	279.2	156.0	47	4.5	9	27	6.0
		186.1 ^a	49	4.0	10	25	6.5
SDZ	251.1	108.0	42	4.3	11	35	4.2
		156.0 ^a	43	3.5	9	23	5.0
SMR	265.2	107.9 ^a	47	4.5	11	37	4.5
		156.0	48	5.0	10	24	5.5

^a quantitative ion

Analytes	Parent	Daughter	Declustering	Entrance	Collision	Collision	Collision cell
	ion	ion	Potential/	Potential/	cellent	Energy/	exit potential/
	(m/z)	(m/z)	V	V	potential/V	eV	V
SMM	281.2	156.0 ª	50	5.0	10	26	5.5
		215.1	48	5.0	9	25	7.0
SMZ-d ₄	283.1	160.0 ª	48	4.5	10	28	6.0
		186.0	48	4.5	10	26	6.5
SMX-d ₄	257.9	112.0	44	4.5	11	36	4.8
		160.0ª	44	4.5	9	25	5.5
SPI	843.4	174.1 ^a	87	10	30	50	8.0
		318.3	85	9.5	30	42	8.0
JOS	828.3	174.2ª	79	10	30	47	7.5
		229.1	77	10	28	43	8.5
TYL	916.3	174.0ª	83	10	33	55	8.0
		772.3	85	9.0	29	43	17
ERY	734.3	158.2ª	60	4.8	27	41	6.0
		576.3	58	4.8	23	28	12
ROX	837.4	158.1 ^a	62	7.0	30	48	7.0
		679.4	62	6.5	26	30	14
SPI I-d ₃	846.4	174.1 ^a	85	10	30	52	8
		432.3	30	4.5	27	18	15
ERY- ¹³ C,d ₃	738.0	162.1 ª	55	5.0	25	45	7.0
		580.3	55	5.0	23	28	12

Table S2 Experimental conditions of electrospray tandem mass spectrometry (continued)

^a quantitative ion

Groups	Analytes	Surrogates	r	Linear range (µg L ⁻¹)	Recovery (%)	LODs (µg L-1)
FQs	NOR	NOR-d ₅	0.9974	0.1-500	87.5±7.4	0.1
	CIP	NOR-d ₅	0.9987	0.05-500	82.7±11.4	0.1
	DIF	OFL-d ₃	0.9985	0.05-500	74.3±10.3	0.1
	ENR	OFL-d ₃	0.9990	0.05-500	97.4±89	0.1
	FLE	OFL-d ₃	0.9984	0.1-500	97.6±6.8	0.15
	OFL	OFL-d ₃	0.9988	0.1-500	104.0±8.5	0.2
	LOM	OFL-d ₃	0.9967	0.05-500	72.4±3.3	0.1
	SAR	SAR-d ₈	0.9992	0.05-200	95.9±4.6	0.1
SAs	STZ	SMX-d ₄	0.9974	0.01-500	84.2±5.9	0.02
	SMX	SMX-d ₄	0.9991	0.1-500	101.0±4.3	0.15
	SIA	SMX-d ₄	0.9987	0.02-500	88.3±2.7	0.05
	SPD	SMZ-d ₄	0.9985	0.02-500	98.0±5.3	0.04
	SDM	$SMZ-d_4$	0.9996	0.01-500	121.0±5.6	0.01
	SMZ	SMZ-d ₄	0.9993	0.01-500	102.0±3.7	0.02
	SDZ	$SMZ-d_4$	0.9986	0.05-500	101.0±3.5	0.05
	SMR	SMZ-d ₄	0.9977	0.02-500	107.0±7.1	0.05
	SMM	SMZ-d ₄	0.9985	0.02-500	112.0±7.3	0.1
MCs	SPI	SPI I-d ₃	0.9980	0.1-500	104.0±5.2	0.1
	JOS	SPI I-d ₃	0.9934	0.05-200	84.4±5.6	0.05
	TYL	SPI I-d ₃	0.9934	0.05-200	90.0±7.1	0.05
	ROX	SPI I-d ₃	0.9905	0.05-500	101.0±6.1	0.1
	ERY	ERY- ¹³ C,d ₃	0.9992	0.1-500	109.0±5.3	0.15

Table S3 Correlation coefficients (r), linear range, recoveries (%) and limits of detection (LODs, S/N=3) of 22 antibiotics

Groups	Analytes	Primary usage	Usage (tons) ¹⁷				
			Human	Pig	Chicken	Others	Total
FQs	NOR	Human, animal	1013	2820	961	644	5440
	CIP	Human, animal	455	3110	1060	712	5340
	DIF	Animal	0	378	172	117	667
	ENR	Animal	0	3090	1150	940	5180
	FLE	Human, animal	119	60.6	21.6	15.1	216
	OFL	Human, animal	1286	2440	832	557	5110
	LOM	Human, animal	228	650	222	149	1250
	SAR	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Total		3101	12549	4419	3134	23203
SAs	STZ	Animal	0.66	40.2	13.7	9.18	63.7
	SMX	Human, animal	2	198	67.6	45.3	313
	SIA	Human	n.a.	n.a.	n.a.	n.a.	n.a.
	SPD	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	SDM	Animal ¹⁸	n.a.	n.a.	n.a.	n.a.	n.a.
	SMZ	Human, animal	68.4	388	132	88.7	677
	SDZ	Human, animal	238	648	221	148	1260
		(Animal forbidden) ¹⁹					
	SMR	Human ¹⁸	n.a.	n.a.	n.a.	n.a.	n.a.
	SMM	Animal	9.93	1400	477	320	2210
	Total		319	2674	911	611	4524
MCs	SPI	Human ¹⁹	n.a.	n.a.	n.a.	n.a.	n.a.
	JOS	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	TYL	Animal	0	3090	1050	706	4850
	ERY	Human, animal	1244	1580	565	377	3770
	ROX	Human, animal	184	112	67.3	22.5	386
	Total		1428	4782	1682	1106	9006

Table S4 Usa	ige of some	antibiotics	in	China	in	2013
--------------	-------------	-------------	----	-------	----	------

n.a.: not available

Groups	Analytes	Taxonomic	Species	$L(E)C_{50}s$	PNEC ^a	Reference
		group		(mg/L)	(ng/L)	
FQs	NOR	Algae	S. obliquus	50.18 (96 h)	50,180	20
		Invertebrate	D. magna	194.98 (48 h)	194,980	20
	CIP	Algae	M. aeruginosa	0.017 (24h)	17	21
		Algae	P. subcapitata	18.7 (24h)	18,700	21
		Plant	L. minor	0.203 (24h)	203	21
	ENR	Algae	M. aeruginosa	0.049 (24h)	49	21
		Algae	P. subcapitata	3.10 (24h)	3,100	21
		Plant	L. minor	0.114 (24h)	114	21
		Invertebrate	D. magna	56.7 (48h)	56,700	4
		Invertebrate	M. macrocopa	>200 (48h)	200,000	4
		Fish	O. latipes	>100 (48h)	100,000	4
	LOM	Algae	M. aeruginosa	0.186(24h)	186	21
		Algae	P. subcapitata	22.7 (24h)	22,700	21
	OFL	Algae	M. aeruginosa	0.021 (24h)	21	21
		Algae	P. subcapitata	1.44 (72 h)	1,440	22
		Plant	L. minor	0.126 (24h)	126	21
		Plant	L. gibba	0.121 (72 h)	121	23
		Invertebrate	C. dubia	17.41 (48 h)	17,410	22
		Invertebrate	D. magna	31.75 (72h)	31,750	24
		Invertebrate	T. platyurus	33.98 (72h)	33,980	24
		Fish	B. rerio	>1000 (72h)	1000,000	24
SAs	SMX	Algae	S. leopolensis	0.03 (96h)	30	22
		Invertebrate	C. dubia	15.51 (48 h)	15,510	22
		Invertebrate	D. magna	177.3 (96h)	177,300	25
		Invertebrate	D. magna	25.20 (72h)	25,200	24
		Invertebrate	T. platyurus	35.36(72h)	35,360	24
		Fish	B. rerio	>1000 (72h)	1000,000	24
		Fish	O. latipes	562.5 (96h)	562,500	25
	SDZ	Algae	M. aeruginosa	0.135 (72h)	135	26
		Algae	S. capricornotum	2.19 (72h)	2,190	27
		Algae	S. vacuolatus	2.22 (24h)	2,220	28
		Invertebrate	D. magna	221 (48h)	221,00	29
		Plant	L. minor	0.07(72h)	70	28
	SMZ	Algae	P. subcapitata	0.103 (72h)	103	27
		Invertebrate	D. magna	215.9 (48h)	215,900	27
		Invertebrate	M. macrocopa	110.7 (48h)	110,700	27
		Fish	O. latipes	>100 (48h)	100,000	27
	SDM	Algae	S. vacuolatus	9.85(24h)	9,850	28
		Plant	L. minor	0.02(72h)	20	28
	SPD	Algae	S. vacuolatus	5.28(24h)	5,280	28
		Plant	L. minor	0.46(72h)	460	28

 Table S5 Acute toxicity data for selected antibiotics on aquatic organisms.

Groups	Analytes	Taxonomic	Species	$L(E)C_{50}s$	PNEC ^a	Reference
		group		(mg/L)	(ng/L)	
MCs	ROX	Invertebrate	D. magna	7.1 (96 h)	7,100	30
		Invertebrate	M. macrocopa	39.3 (96 h)	39,300	30
		Fish	O. latipes	288.3 (96 h)	288,300	30
	ERY	Algae	P. subcapitata	0.02 (72h)	20	22
		Invertebrate	B. calyciflorus	0.94 (48 h)	940	22
		Invertebrate	C. dubia	10.23(72h)	10,230	24
		Invertebrate	D. magna	22.45 (72h)	22,450	24
		Invertebrate	T. platyurus	17.68 (72h)	17,680	24
		Fish	B. rerio	>1000 (72h)	1000,000	24

PNEC^a = Lowest EC₅₀/ 1000 for acute toxicity

Brachionus calyciflorus=B. calyciflorus; Brachydanio rerio=B. rerio; Ceriodaphnia dubia=C. dubia; Daphnia Magna=D. magna; Lemna gibba=L. gibba; Lemna minor=L. minor; Microcystis aeruginosa=M. aeruginosa; Moina macrocopa=M. macrocopa; Oryzias latipes=O. latipes; Oncorhynchus mykiss=O. mykiss; Pseudokirchneriella subcapitata=P. subcapitata; Selenastrum capricornotum= S. capricornotum; Synechoccus leopolensis=S. leopolensis; Scenedesmus obliquus=S. obliquus;Scenedesmus vacuolatus=S. vacuolatus; Thamnocephalus platyurus=T. platyurus

Groups	Analytes	Taxonomic	Species	$L(E)C_{50}s$	PNEC ^b	Reference
		group		(mg/L)	(ng/L)	
FQs	NOR	Plant	L. gibba	0.913 (7 d)	9,130	31
	CIP	Plant	L. gibba	0.698 (7 d)	6,980	31
	LOM	Plant	L. minor	0.106(7d)	1,060	21
	OFL	Plant	L. gibba	0.532 (7 d)	5,320	31
SAs	SMX	Plant	L. gibba	0.081 (7 d)	810	31
		Plant	L. gibba	0.21 (7 d)	2,100	24
	SMZ	Plant	L. gibba	1.277 (7 d)	12,770	27
MCs	ROX	Plant	L. gibba	>1 (7 d)	10,000	31
	ERY	Plant	L. gibba	>1 (7 d)	10,000	31
		Plant	L. minor	5.62 (7 d)	56,200	32

 Table S6 Chronic toxicity data for selected antibiotics on aquatic organisms.

PNEC^b= Lowest EC₅₀/ 100 for chronic toxicity

Lemna gibba=L. gibba; Lemna minor=L. minor

Sampling site

Fig.S1 Concentration-percent composition of antibiotics in 36 surface water samples

Fig. S2 Locations of animal farms in urban Beijing

Fig. S3 Distribution map of risk quotients (HQs) of OFL (a), SMX (b), ERY (c), and CIP (d) in the surface water of Beijing.

Reference

1. Zorita, S.; Mårtensson, L.; Mathiasson, L., Occurrence and removal of pharmaceuticals in a municipal sewage treatment system in the south of Sweden. *Sci Total Environ* **2009**, *407* (8), 2760-2770.

2. Babić, S.; Horvat, A. J. M.; Mutavdžić Pavlović, D.; Kaštelan-Macan, M., Determination of pKa values of active pharmaceutical ingredients. *Trac-Trend Anal Chem* **2007**, *26* (11), 1043-1061.

3. Feitosa-Felizzola, J.; Chiron, S., Occurrence and distribution of selected antibiotics in a small Mediterranean stream (Arc River, Southern France). *J Hydrol* **2009**, *364* (1-2), 50-57.

4. Park, S.; Choi, K., Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems. *Ecotoxicology* **2008**, *17* (6), 526-538.

5. Sanderson, H.; Thomsen, M., Comparative analysis of pharmaceuticals versus industrial chemicals acute aquatic toxicity classification according to the United Nations classification system for chemicals. Assessment of the (Q)SAR predictability of pharmaceuticals acute aquatic toxicity and their predominant acute toxic mode-of-action. *Toxicol Lett* **2009**, *187* (2), 84-93.

6. Tolls, J., Sorption of Veterinary Pharmaceuticals in Soils: A Review. *Environ Sci Technol* **2001**, *35* (17), 3397-3406.

7. Lützhøft, H.; Halling-Sorensen, B.; Jorgensen, S. E., Algal toxicity of antibacterial agents applied in Danish fish farming. *Arch Environ Con Tox* **1999**, *36* (1), 1-6.

8. Diaz-Cruz, M.; Lopezdealda, M.; Barcelo, D., Determination of antimicrobials in sludge from infiltration basins at two artificial recharge plants by pressurized liquid extraction–liquid chromatography–tandem mass spectrometry. *J Chromatogr A* **2006**, *1130* (1), 72-82.

9. Kan, C. A.; Petz, M., Residues of veterinary drugs in eggs and their distribution between yolk and white. *J Agr Food Chem* **2000**, *48* (12), 6397-6403.

10. Jacobsen, A.; Hallingsorensen, B.; Ingerslev, F.; Honorehansen, S., Simultaneous extraction of tetracycline, macrolide and sulfonamide antibiotics from agricultural soils using pressurised liquid extraction, followed by solid-phase extraction and liquid chromatography–tandem mass spectrometry. *J Chromatogr A* **2004**, *1038* (1-2), 157-170.

11. Yang, S. F.; Lin, C. F.; Lin, A. Y. C.; Hong, P. K. A., Sorption and biodegradation of sulfonamide antibiotics by activated sludge: Experimental assessment using batch data obtained under aerobic conditions. *Water Res* **2011**, *45* (11), 3389-3397.

12. Kim, I.; Tanaka, H., Photodegradation characteristics of PPCPs in water with UV treatment. *Environ Int* **2009**, *35* (5), 793-802.

13. Calza, P.; Marchisio, S.; Medana, C.; Baiocchi, C., Fate of antibacterial spiramycin in river waters. *Anal Bioanal Chem* **2009**, *396* (4), 1539-1550.

14. Skinner, M.; Kanfer, I., Intrinsic dissolution rate and solubility studies on josamycin, a macrolide antibiotic. *Int J Pharm* **1992**, *88* (1-3), 151-158.

15. Chee-Sanford, J. C.; Mackie, R. I.; Koike, S.; Krapac, I. G.; Lin, Y. F.; Yannarell, A. C.; Maxwell, S.; Aminov, R. I., Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. *J Environ Qual* **2009**, *38* (3), 1086-108.

16. Suárez, S.; Carballa, M.; Omil, F.; Lema, J. M., How are pharmaceutical and personal care products (PPCPs) removed from urban wastewaters? *Reviews in Environmental Science and Bio/Technology* **2008**, *7* (2), 125-138.

17. Zhang, Q. Q.; Ying, G. G.; Pan, C. G.; Liu, Y. S.; Zhao, J. L., Comprehensive evaluation of antibiotics emission and fate in the river basins of china: source analysis, multimedia modeling, and

linkage to bacterial resistance. Environ Sci Technol 2015, 49 (11), 6772-82.

18. Kim, S. C.; Carlson, K., Temporal and spatial trends in the occurrence of human and veterinary antibiotics in aqueous and river sediment matrices. *Environ Sci Technol* **2007**, *41* (1), 50-57.

Zhang, R.; Tang, J.; Li, J.; Cheng, Z.; Chaemfa, C.; Liu, D.; Zheng, Q.; Song, M.; Luo, C.; Zhang, G., Occurrence and risks of antibiotics in the coastal aquatic environment of the Yellow Sea, North China. *Sci Total Environ* 2013, *450*, 197-204.

20. Lu, J.; Li, X.; Yang, Y.; Nie, X., Toxic effects of nutylated hydroxyanisole and norfloxacin on aquatic organisms. *Ecologic Science* **2007**, *26* (1), 55-58.

21. Robinson, A. A.; Belden, J. B.; Lydy, M. J., Toxicity of fluoroquinolone antibiotics to aquatic organisms. *Environ Toxicol Chem* **2005**, *24* (2), 423-430.

22. Cunningham, V. L.; Buzby, M.; Hutchinson, T.; Mastrocco, F.; Parke, N.; Roden, N., Effects of Human Pharmaceuticals on Aquatic Life: Next Steps. *Environ Sci Technol* **2006**, *40* (11), 3456-3462.

23. Crane, M.; Watts, C.; Boucard, T., Chronic aquatic environmental risks from exposure to human pharmaceuticals. *Sci Total Environ* **2006**, *367* (1), 23-41.

 Isidori, M.; Lavorgna, M.; Nardelli, A.; Pascarella, L.; Parrella, A., Toxic and genotoxic evaluation of six antibiotics on non-target organisms. *Science of the Total Environment* 2005, *346* (1-3), 87-98.

25. Kim, Y.; Choi, K.; Jung, J. Y.; Park, S.; Kim, P. G.; Park, J., Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea. *Environ Int* **2007**, *33* (3), 370-375.

26. Lützhøft, H.; Halling-Sorensen, B.; Jorgensen, S. E., Algal toxicity of antibacterial agents applied in Danish fish farming. *Arch Environ Con Tox* **1999**, *36* (1), 1-6.

27. Garcia-Galan, M. J.; Diaz-Cruz, M. S.; Barcelo, D., Combining chemical analysis and ecotoxicity to determine environmental exposure and to assess risk from sulfonamides. *Trac-Trend Anal Chem* **2009**, *28* (6), 804-819.

28. Bialk-Bielinska, A.; Stolte, S.; Arning, J.; Uebers, U.; Boschen, A.; Stepnowski, P.; Matzke, M., Ecotoxicity evaluation of selected sulfonamides. *Chemosphere* **2011**, *85* (6), 928-33.

29. Wollenberger, L.; Halling-Sorensen, B.; Kusk, K. O., Acute and chronic toxicity of veterinary antibiotics to Daphnia magna. *Chemosphere* **2000**, *40* (7), 723-730.

30. Choi, K.; Kim, Y.; Jung, J.; Kim, M. H.; Kim, C. S.; Kim, N. H.; Park, J., Occurrences and ecological risks of roxithromycin, trimethoprim, and chloramphenicol in the Han River, Korea. *Environ Toxicol Chem* **2008**, *27* (3), 711-719.

31. Brain, R. A.; Johnson, D. J.; Richards, S. M.; Sanderson, H.; Sibley, P. K.; Solomon, K. R., Effects of 25 pharmaceutical compounds to Lemna gibba using a seven-day static-renewal test. *Environ Toxicol Chem* **2004**, *23* (2), 371-382.

32. Pomati, F.; Netting, A. G.; Calamari, D.; Neilan, B. A., Effects of erythromycin, tetracycline and ibuprofen on the growth of Synechocystis sp and Lemna minor. *Aquat Toxicol* **2004**, *67* (4), 387-396.