Supplementary Information:

Evaluation of residual antibacterial potency in antibiotic production wastewater

using a real-time quantitative method

Hong Zhang ^a, Yu Zhang ^{a, b, *}, Min Yang ^a, Miaomiao Liu ^b

^a Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research

Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing,

100085, China.

^b Key Laboratory of Drinking Water Science and Technology, Research Center for

Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.

* Corresponding author (E-mail: zhangyu@rcees.ac.cn, Tel: 86-10-62928390, Fax: 86-10-62923541)

Materials and methods

Figure S1

Table S1-S9

References

Materials and methods

Sample pretreatment

The solid phase extraction (SPE) procedures for oxytetracycline (OTC) production wastewater were carried out as follows¹: (1) adjust the pH of wastewater sample (500 mL each) to 2.5–3.0 with 40% H₂SO₄, and add 0.2 g of Na₂EDTA to the sample to complex potential interfering metals; (2) precondition an Oasis HLB cartridge with 5 mL of methanol, 5 mL of 0.5 M HCl and 5 mL of ultra-pure water sequentially; (3) extract the sample with the HLB cartridge at a flow rate of approximately 0.5 mL/min, and wash the cartridge with 5 mL of 5% methanol aqueous solution and 5 mL ultrapure water; (4) elute the antibiotics with 10 mL of a dichloromethane/acetone mixture (3:2, v/v); (5) dry the extract under a gentle stream of N₂; (6) dissolve the dried residue with 0.8 mL of methanol and dilute with 1.2 mL of ultra-pure water.

The SPE procedures for spiramycin (SPM) production wastewater were carried out as follows²: (1) Oasis HLB cartridges were preconditioned sequentially with 10 mL of methanol, 10 mL of water, 10 mL of 2% NaCl, and 2 mL of 0.1 M phosphate buffer (pH 8.0); (2) extract 500 mL wastewater sample (after filtered) with the HLB cartridge at a flow rate of 0.5 mL/min, and wash the cartridge with 5 mL of ultra-pure water; (3) the cartridge was then dried under a gentle stream of N₂; (4) antibiotics were eluted from the cartridge with 10 mL of 95% methanol; (5) dry the extract under a gentle stream of N₂; (6) dissolve the dried residue with 2 mL of solvent buffer (prepared by mixing ACN and 0.1 M ammonium acetate in a ratio of 15:85).

UPLC-MS/MS analyses

Concentrations of OTC and its transformation products (three hydrolysates, 4-epioxytetracycline (EOTC), α -apo-oxytetracycline (α -apo-OTC), β -apo-oxytetracycline (β -apo-OTC)) and SPM and neospiramycin (NeoSPM) were detected by UPLC-MS/MS (Acquity UPLC system, Waters, USA) equipped with an Acquity UPLC BEH C18 column (2.1 mm×100 mm, 1.7 µm particles, Waters, USA) according to procedures reported previously¹⁻⁵.

OTCs: Stock solutions of OTCs (1 mg/mL) were prepared in methanol and diluted to the range of 0.05–1 mg/L to obtain the standard curves. Ultrapure water added with 0.1% formic acid was used as solution A, while methanol was used as solution B. Separation conditions are as following: solution A decreased from 90% to 70% in the first 4 min, then decreased from 70% to 10% in 4.5 min, and then maintained at 10% for 1 min, and increased back to 90% in 0.5 min, finally balancing at 90% for 3 min. The flow rate was 0.25 mL/min. The electrospray ionization was operated in the positive ion mode. The capillary was 3.5 kV, source temperature was 110 °C, and desolvation temperature was 600 °C. Nitrogen gas was used as the desolvation gas with a flow rate of 600 L/h and the cone gas of 60 L/h. The operational parameters of the tandem MS were listed in Table S3.

SPMs: Stock solutions of SPM and NeoSPM (1 mg/mL) were prepared in methanol and diluted to the range of 0.05–1 mg/L to obtain the standard curves. Ultrapure water added with 0.1% formic acid was used as solution A, while methanol was used as solution B. Separation conditions are as following: solution A decreased from 90% to 60% in the first 3 min, then maintained at 60% for 3 min, and increased back to 90% in 0.1 min, finally balancing at 90% for 3.9 min. The flow rate was 0.25 mL/min. Electro-sprayed ionization mode (positive) was used for the MS/MS system. Ion source and dissolvent gas temperatures were 120 °C and 600 °C, respectively. Capillary was 3.5 kV. The dissolvent gas flow rate was 600 L/h. The operational parameters of the tandem MS were listed in Table S4.

(d) Biological OTC production wastewater treatment system

Fig.S1 The flow chart and sampling sites of four wastewater treatment systems treating Spiramycin (SPM) in Pilot-scale (a), Full-scale (b), Lab-scale (c), and Oxytetracycline (OTC) (d).

"• ": Sampling sites. UASB: Up-flow Anaerobic Sludge Bed; SBR: Sequential Batch Reactor.

SPM (P)-W1, W2, W3: UASB effluent, Anoxic reactor effluent, Aerobic reactor effluent from the pilot-scale system for treating SPM wastewater; **SPM (F)-W1, W2**: Anoxic reactor effluent, Final effluent from full-scale system for treating SPM wastewater; **SPM (L)-W**: Final effluent from lab-scale system for treating SPM simulation wastewater; **OTC-W1, W2, W3**: influent,

Table S1 Composition of antibiotic assay medium No.3

Subsance	g/L	Substance	g/L
Peptone	5	Sodium chloride	3.5
Beef extract powder	1.5	Dipotassium hydrogen phosphate	3.68
Yeast extract powder	3	Potassium dihydrogen phosphate	1.32
Glucose	1	pH	7.0-7.2

 Table S2 Preparation of phosphate buffer solution (PBS)

PBS	Dipotassium hydrogen phosphate	Potassium dihydrogen phosphate
pH=7.8	5.59 g/L	0.41 g/L
pH=6.0	2.00 g/L	8.00 g/L

Table S3 ESI-MS/MS parameters for OTCs

Analyte	MRM transition (m/z)	Cone voltage (V)	Collision energy (kV)
OTC	461.5 > 443, 461.5 > 426*	25	15
EOTC	461.5 > 443, 461.5 > 426*	25	15
α-apo-OTC	443 > 426*, 443 > 408	23	18
β-apo-OTC	443 > 426*, 443 > 408	23	18

*Predominant ion defined as a base peak for quantification.

Table S4 ESI-MS/MS parameters for spiramycin and neospiramycin

Analyte	MRM transition (m/z)	Cone voltage (V)	Collision energy (kV)
NeoSPM	699.0 > 174.0*; 699.0 > 159.9	18	15
SPM	843.6 > 174.0*; 843.6 > 100.9	25	25

*Predominant ion defined as a base peak for quantification.

Target sample		Environmental process	Tested metho	d	Tested strain	Potency expression	Antibiotic analyses	Reference
Environmental samples	Antibiotic production wastewater	Wastewater treatment systems	Real-time quantitative assay method	37 °C, agitation, real-time (≤ 4 h)	Staphylococcus aureus	Antibiotic equivalent quantity (EQ, mg/L)	UPLC- MS/MS	This study
Artificial antibiotic solutions	Sulfa drug solution	Photolysis	Fixed growth time method	37 °C, 200 rpm agitation, 8 h	<i>Escherichia coli</i> DH5a	EC ₅₀	HPLC	6
	Tetracycline solution	Photolysis		37 °C, 190 rpm agitation, 6 h	<i>Escherichia coli</i> DH5a	EC ₅₀	-	7
	Lincomycin, ciprofloxacin, trimethoprim solutions	Oxidization by potassium permanganate		37 °C, gently shaken, 6 h	Escherichia coli DH5R	Growth inhibition (I, %); EC ₅₀	LC- MS/MS; HPLC- PDA	8
	Antibacterial molecules (13) ^a ; biocide triclosan solutions	O ₃ , •OH treatment		37 °C or 30 °C, 200 rpm agitation, 8 h	<i>Escherichia coli</i> K12 wildtype; <i>Bacillus subtilis</i> Marburg	Growth inhibition (I, %); PEQ = EC _{50,0} /EC _{50,x}	-	9
	Ciprofloxacin solution	Aqueous photolytic and photocatalytic batch reactions		37 °C, 200 rpm agitation, 8 h	Escherichia coli	Growth inhibition (I, %); PEQ = $EC_{50,0}/EC_{50,x}$	HPLC	10

Table S5 Brief review about potency assay in this study and previous studies

β-lactam, β-	O ₃ , •OH	30 °C, 200	Bacillus subtilis	Growth	HPLC-	11
lactam-(R)-	treatment	rpm	Marburg	inhibition (I, %);	MS/MS;	
sulfoxide		agitation, 8 h		PEQ =	HPLC-UV	
solutions				EC _{50,0} /EC _{50,x}		

a. Roxithromycin, azithromycin, tylosin, ciprofloxacin, enrofloxacin, penicillinG, cephalexin, sulfamethoxazole, trimethoprim, lincomycin, tetracycline, vancomycin, amikacin.

Inhibition ratio ^a (%)	Conver	tional fiz	Real-time			
	100	120	140	160	180	quantitative
	min	min	min	min	min	method (t_x^{b})
Oxytetracycline	61.35	61.64	60.51	53.96	46.68	50.32 (170 min ^b)
solution (n=5)	52.77	55.15	54.34	50.69	42.88	50.69 (160 min ^b)
	58.76	56.68	54.45	48.62	38.54	51.46 (150 min ^b)
	57.59	55.96	52.54	46.65	36.23	50.00 (150 min ^b)
	53.57	55.53	55.52	53.08	46.82	50.51 (170 min ^b)
Average	56.81	56.99	55.47	50.60	42.23	50.60
RSD (%)	6.33	4.66	5.43	6.01	11.29	1.08

Table S6 Comparison of repeatability of the real-time quantitative method (n=5) with the conventional fixed growth time one

^a Results were expressed by inhibition ratio (%) of bacterial growth.

 $^{\rm b}$ t_x was determined on the basis of the correlation coefficient of linearity in the realtime quantitative method.

Spiked Average Average Recovery Sample concentration potency (EQ recovery rate (%) (mg/L)mg/L) rate (%) 50 49.68 99.36 Oxytetracycline in 10 9.97 99.75 100.04 deionized water 2 2.02 101.01 Oxytetracycline in 5 oxytetracyciline 4.97 99.40 99.40 wastewater⁺ 100 98.05 98.05 Spiramycin in 10 10.01 100.11 99.18 deionized water 2 1.99 99.37

Table S7 Recovery rate of the real-time quantitative potency assay (n=6)

⁺ Addition of 5 mg/L oxytetracycline standards to oxytetracycline wastewater.

concentration	concentrations of only centre production wasterwater (it 0.999.1 0.01)						
Sample	Potency ^a	OTC Conc. ^b	EOTC	α-ΟΤС	β-ΟΤϹ		
	(oxytetracycline	(mg/L)	Conc. ^b	Conc. ^b	Conc. ^b		
	EQ mg/L)		(mg/L)	(mg/L)	(mg/L)		
$OTC-W1_1$	8.43 ± 0.49	7.80 ± 0.67	0.61 ± 0.04	-	-		
$OTC-W2_1$	2.27 ± 0.14	2.24 ± 0.01	-	-	-		
$OTC-W3_1$	1.52 ± 0.16	2.03 ± 0.01	-	-	-		
$OTC-W1_1^+$	13.41 ± 0.76	12.23 ± 0.04	0.75 ± 0.01	-	-		
OTC-W1 ₂	6.57 ± 0.24	6.26 ± 0.16	0.41 ± 0.03	-	-		
OTC-W3 ₂	0.66 ± 0.04	0.62 ± 0.09	-	-	-		

Table S8 Potencies and oxytetracycline and its transformation products concentrations of oxytetracycline production wastewater ($R^2 = 0.999$, P < 0.01)

^a Antibacterial potency determined by real-time quantitative method expressed by oxytetracycline equivalent quantity.

^b Concentrations of oxytetracycline (OTC) and its transformation products (4epioxytetracycline (EOTC), α -apo-oxytetracycline (α -OTC), β -apo-oxytetracycline (β -OTC)) determined by UPLC-MS/MS.

⁺ Addition of 5 mg/L oxytetracycline standards.

Table S9 Potencies and spiramycin concentrations of spiramycin production wastewater ($R^2 = 0.896$, P < 0.01)

Sample	Potency a (spiramycin EQ mg/L)	SPM Conc. ^b (mg/L)
SPM (P)-W1 ₁	11.01 ± 0.08	1.88 ± 0.03
SPM (P)-W2 ₁	8.56 ± 0.000	1.61 ± 0.01
SPM (P)-W3 ₁	1.81 ± 0.11	0.84 ± 0.01
SPM (P)-W2 ₂	8.91 ± 0.04	2.26 ± 0.04
SPM (P)-W3 ₂	1.54 ± 0.01	0.77 ± 0.01
SPM (P)-W2 ₃	10.91 ± 0.83	1.50 ± 0.07
SPM (P)-W3 ₃	1.81 ± 0.12	0.81 ± 0.03
SPM (F)-W1 ₁	1.65 ± 0.22	0.38 ± 0.01
SPM (F)-W2 ₁	0.71 ± 0.09	0.31 ± 0.01
SPM (F)-W1 ₂	2.05 ± 0.04	1.41 ± 0.05
SPM (F)-W2 ₂	1.50 ± 0.05	0.39 ± 0.01

^a Antibacterial potency determined by real-time quantitative method expressed by spiramycin equivalent quality.

^b Spiramycin (SPM) concentration determined by UPLC-MS/MS.

References:

1. W. Ben, Z. Qiang, C. Adams, H. Zhang and L. Chen, *Journal of Chromatography A*, 2008, **1202**, 173-180.

2. J. Wang and D. Leung, Journal of Separation Science, 2009, 32, 681-688.

3. D. Li, M. Yang, J. Hu, L. Ren, Y. Zhang and K. Li, *Environmental Toxicology* and Chemistry, 2008, 27, 80-86.

4. A. Gobel, C. S. McArdell, M. J. F. Suter and W. Giger, *Analytical Chemistry*, 2004, 76, 4756-4764.

5. M. Liu, R. Ding, Y. Zhang, Y. Gao, Z. Tian, T. Zhang and M. Yang, Water Research, 2014, 63, 33-41.

6. K. H. Wammer, T. M. Lapara, K. McNeill, W. A. Arnold and D. L. Swackhamer, *Environmental Toxicology and Chemistry*, 2006, **25**, 1480-1486.

 K. H. Wammer, M. T. Slattery, A. M. Stemig and J. L. Ditty, *Chemosphere*, 2011, 85, 1505-1510.

8. L. Hu, A. M. Stemig, K. H. Wammer and T. J. Strathmann, *Environmental Science & Technology*, 2011, **45**, 3635-3642.

9. M. C. Dodd, H. P. E. Kohler and U. Von Gunten, *Environmental Science & Technology*, 2009, **43**, 2498-2504.

10. T. Paul, M. C. Dodd and T. J. Strathmann, Water research, 2010, 44, 3121-3132.

11. M. C. Dodd, D. Rentsch, H. P. Singer, H. P. E. Kohler and U. von Gunten, Environmental Science & Technology, 2010, 44, 5940-5948.