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1 Supporting methods information

The following sections are provided to add explanatory detail to the methods. Where ap-
propriate, Python code is included.

1.1 Database development and distributed computing

For each experiment, training and target features were input into a spreadsheet. These data
were then imported using Python and uploaded to a secure SQLite database hosted and
accessed within the ETH domain. The code developed for this work connects to the secure
database, retrieves the required data, and runs the machine learning code. Because the
calculations were computationally demanding, model runs were parallelized and distributed
to 5 computers.

1.2 Controlling randomness

There are several parts of the model that employ random or pseudo-random processes. For
these portions, the random state was controlled using a seed that is modified every model
run, i (i.e., random state = seed*i).

1.3 RFECV method and modification

All parameters of the code that we used to create the random forests in our work are de-
scribed in the scikit-learn library, see http://scikit-learn.org/stable/ and, more specifically,

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForest
Regressor.html for the regression task and

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForest
Classifier.html for the classification task.

The criteria used to evaluate the quality of a split in the generation of the decision trees that
form a random forest are mean squared error for regression and gini impurity for classifica-
tion, which are the default criteria of the scikit code.

As a modification of the code specific to this work, we generated a code that enables
RFECV to be performed in tandem with random forest regression and classification. The
RFECV (recursive feature elimination with cross validation) method requires that the ma-
chine learning estimator (e.g., random forest) output a weight for each feature so it can
remove the least valuable feature in the next recursion step. Traditionally, this weight is
determined by assigning an output rank, which is, however, not included in the default ran-
dom forest regression or classification class definition within the Sklearn package. Instead,
the feature importance was employed as a proxy for the output rank as shown below for the
regression and classification approaches.
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Regression RFECV Modification

import multiprocessing

from sklearn.ensemble import RandomForestRegressor

from sklearn.feature_selection import RFECV

# random forest regressor estimator call

rfc = RandomForestRegressor(n_estimators=1000, bootstrap=True,

criterion=’mse’,oob_score=True, max_features="auto",n_jobs=-1)

# regressor class re-definition

class RandomForestRegressorWithCoef(RandomForestRegressor):

def fit(self, *args, **kwargs):

super(RandomForestRegressorWithCoef, self).fit(*args, **kwargs)

self.coef_ = self.feature_importances_

# random forest regressor with coefficient estimator call

rfc = RandomForestRegressorWithCoef(n_estimators=1000, bootstrap=True,

criterion=’mse’,oob_score=True, max_features="auto",n_jobs=-1)

Classification RFECV Modification

import multiprocessing

from sklearn.ensemble import RandomForestClassifier

from sklearn.feature_selection import RFECV

# random forest classifier estimator call

rfc = RandomForestClassifier(n_estimators=1000, bootstrap=True,

criterion=’gini’, oob_score=True, max_features="auto", n_jobs=-1)

# classifier class re-definition

class RandomForestClassifierWithCoef(RandomForestClassifier):

def fit(self, *args, **kwargs):

super(RandomForestRegressorWithCoef, self).fit(*args, **kwargs)

self.coef_ = self.feature_importances_

# random forest regressor with coefficient estimator call

rfc = RandomForestRegressorWithCoef(n_estimators=1000, bootstrap=True,

criterion=’gini’, oob_score=True, max_features="auto", n_jobs=-1)
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2 Publications mined for the database

Table 1: Publications employed for this study organized by types of nanoparticles.

Publication Title Reference Material

Sensitivity of the transport and retention of stabilized silver nanoparticles to
physicochemical factors

Liang et al. 1 Ag

Cotransport of Titanium Dioxide and Fullerene Nanoparticles in Saturated Porous
Media

Cai et al. 2 C60

Transport and Retention of Nanoscale C60 Aggregates in Water-Saturated Porous
Media

Wang et al. 3 C60

Influence of Collector Surface Composition and Water Chemistry on the Depo-
sition of Cerium Dioxide Nanoparticles: QCM-D and Column Experiment Ap-
proaches

Liu et al. 4 CeO2

Fate and transport of elemental copper (Cu0) nanoparticles through saturated
porous media in the presence of organic materials

Jones and Su 5 CuO

Transport of Ferrihydrite Nanoparticles in Saturated Porous Media: Role of Ionic
Strength and Flow Rate

Tosco et al. 6 Fe

Transport and retention of multi-walled carbon nanotubes in saturated porous
media: Effects of input concentration and grain size

Kasel et al. 7 MWCNT

Transport of Biochar Particles in Saturated Granular Media: Effects of Pyrolysis
Temperature and Particle Size

Wang et al. 8 nBiochar

Antagonistic Effects of Humic Acid and Iron Oxyhydroxide Grain-Coating on
Biochar Nanoparticle Transport in Saturated Sand.

Wang et al. 9 nBiochar

Facilitated transport of Cu with hydroxyapatite nanoparticles in saturated sand:
Effects of solution ionic strength and composition

Wang et al. 10 nHAP

Transport of ARS-labeled hydroxyapatite nanoparticles in saturated granular me-
dia is influenced by surface charge variability even in the presence of humic acid

Wang et al. 11 nHAP

Comparison of three labeled silica nanoparticles used as tracers in transport ex-
periments in porous media. Part II: Transport experiments and modeling

Vitorge et al. 12 SiO2

Transport and Retention of TiO2 Rutile Nanoparticles in Saturated Porous Media
under Low-Ionic-Strength Conditions: Measurements and Mechanisms

Chen et al. 13 TiO2

Mechanisms of TiO2 nanoparticle transport in porous media: Role of solution
chemistry nanoparticle concentration and flowrate

Chowdhury
et al. 14

TiO2

Application of an empirical transport model to simulate retention of nanocrys-
talline titanium dioxide in sand columns

Choy et al. 15 TiO2

Transport and retention behaviors of titanium dioxide nanoparticles in iron oxide-
coated quartz sand: Effects of pH, ionic strength, and humic acid

Han et al. 16 TiO2

Transport and deposition of ZnO nanoparticles in saturated porous media Jiang et al. 17 ZnO

Influence of natural organic matter on the transport and deposition of zinc oxide
nanoparticles in saturated porous media

Jiang et al. 18 ZnO

Transport and retention of zinc oxide nanoparticles in porous media: Effects of
natural organic matter versus natural organic ligands at circumneutral pH

Jones and Su 19 ZnO

Transport of bare and capped zinc oxide nanoparticles is dependent on porous
medium composition

Kurlanda-
Witek et al. 20

ZnO
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The following publications required zeta potential substitution. Grain ζ-potentials for Chowd-
hury et al. 14 were employed from silica surface ζ-potentials from Gu et al. 21 for the same buffer
and approximate pH and ionic strength. Grain ζ-potentials for Choy et al. 15 were employed from
quartz grain ζ-potential from Walker et al. 22 for the same buffer and approximate pH and ionic
strength.
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