Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2015

1 [Supporting Information]

| 2  | Surface Engineering Superparamagnetic                                                  |
|----|----------------------------------------------------------------------------------------|
| 3  | Nanoparticles for Aqueous Applications: Design and                                     |
| 4  | Characterization of Tailored Organic Bilayers                                          |
| 5  | Wenlu Li, Carl H. Hinton, Seung Soo Lee, Jiewei Wu, and John D. Fortner*               |
| 6  | Department of Energy, Environmental, and Chemical Engineering,                         |
| 7  | Washington University in St. Louis,                                                    |
| 8  | St. Louis, Missouri 63130, United States                                               |
| 9  |                                                                                        |
| 10 |                                                                                        |
| 11 | Submitted to                                                                           |
| 12 | <b>Environmental Science: Nano</b>                                                     |
| 13 |                                                                                        |
| 14 |                                                                                        |
| 15 |                                                                                        |
| 16 | *To whom correspondence should be addressed:                                           |
| 17 | John D. Fortner: Tel: +1-314-935-9293; Fax: +1-314-935-5464; Email: jfortner@wustl.edu |



**Figure S1.** Hysteresis loops of 8 nm iron oxide NPs at 300 K.



Figure S2. Bilayer phase transfer process at different stages: (a) at beginning, (b) just after sonication and (c) after 1 day settlement.



23

24 Figure S3. Representative TEM micrographs of (a) RA-NPs, (b) SA-NPs, (c) SDP-NPs, (d)

25 SDS-NPs, (e) C<sub>12</sub>TAB-NPs, and (f) EMPIGEN-NPs in water. All scale bars are 50 nm.

Table S1. Detailed hydrodynamic diameter and transfer yield as functions of sonication
amplitude, sonication time and surfactant concentration tested for ricinoleic acid (RA) coated
NPs.

| Dependent<br>Variable | Time Tested<br>(min)  | Conc. Tested<br>(mM)  | Amplitude<br>Tested   | Hydrodynamic<br>Diameter (nm) | Transfer<br>Yield (%) |
|-----------------------|-----------------------|-----------------------|-----------------------|-------------------------------|-----------------------|
| Amplitude             | 4                     | 10                    | Dependent<br>Variable |                               |                       |
| 50%                   |                       |                       |                       | $20.4 \pm 6.6$                | $47.3 \pm 1.3$        |
| 60%                   |                       |                       |                       | $23.7 \pm 2.1$                | $72.0 \pm 3.1$        |
| 70%                   |                       |                       |                       | $22.4 \pm 0.5$                | 81.2 ± 2.2            |
| 80%                   |                       |                       |                       | 21.3 ± 0.6                    | 84.1 ± 1.9            |
| Time (min)            | Dependent<br>Variable | 10                    | 70%                   |                               |                       |
| 2                     |                       |                       |                       | $23.6 \pm 0.9$                | 53.7 ± 2.5            |
| 4                     |                       |                       |                       | $21.8 \pm 1.8$                | 81.2 ± 2.2            |
| 6                     |                       |                       |                       | $20.9 \pm 1.7$                | $75.9 \pm 2.0$        |
| 8                     |                       |                       |                       | 23.1 ± 3.3                    | 77.3 ± 1.0            |
| Conc. (mM)            | 5                     | Dependent<br>Variable | 70%                   |                               |                       |
| 2.5                   |                       |                       |                       | $24.3 \pm 0.7$                | $62.5 \pm 1.5$        |
| 5                     |                       |                       |                       | $24.2 \pm 0.8$                | $78.6 \pm 2.2$        |
| 10                    |                       |                       |                       | $21.8 \pm 1.2$                | 83.5 ± 1.6            |
| 15                    |                       |                       |                       | $21.3 \pm 1.8$                | 85.1 ± 3.5            |
| 20                    |                       |                       |                       | 22.2 ± 5.5                    | 84.3 ± 1.5            |

| Dependent<br>Variable | Time Tested<br>(min)  | Conc. Tested<br>(uL)  | Amplitude<br>Tested   | Hydrodynamic<br>Diameter (nm) | Transfer Yield<br>(%) |
|-----------------------|-----------------------|-----------------------|-----------------------|-------------------------------|-----------------------|
| Amplitude             | 4                     | 50                    | Dependent<br>Variable |                               |                       |
| 50%                   |                       |                       |                       | $45.4 \pm 2.9$                | $13.4 \pm 1.5$        |
| 60%                   |                       |                       |                       | $41.2 \pm 3.0$                | $19.3 \pm 2.3$        |
| 70%                   |                       |                       |                       | $24.7 \pm 5.7$                | $26.2 \pm 1.1$        |
| 80%                   |                       |                       |                       | 22.7 ± 5.8                    | 25.7 ± 3.2            |
| Time (min)            | Dependent<br>Variable | 50                    | 75%                   |                               |                       |
| 2                     |                       |                       |                       | $31.4 \pm 4.6$                | $16.5 \pm 1.7$        |
| 4                     |                       |                       |                       | $18.5 \pm 4.3$                | $26.6 \pm 2.2$        |
| 6                     |                       |                       |                       | $20.5 \pm 4.1$                | $25.2 \pm 1.4$        |
| 8                     |                       |                       |                       | $19.8 \pm 2.7$                | $21.3 \pm 0.5$        |
| Conc. (uL)            | 6                     | Dependent<br>Variable | 75%                   |                               |                       |
| 12.5                  |                       |                       |                       | 39.4 ± 10.5                   | $17.7 \pm 0.4$        |
| 25                    |                       |                       |                       | $30.4 \pm 5.2$                | 21.1 ± 1.8            |
| 50                    |                       |                       |                       | $19.5 \pm 5.5$                | $25.8 \pm 2.1$        |
| 75                    |                       |                       |                       | $25.2 \pm 4.2$                | $24.1 \pm 1.4$        |
| 100                   |                       |                       |                       | $32.6 \pm 2.7$                | $16.0 \pm 0.9$        |

30 Table S2. Detailed hydrodynamic diameter and transfer yield as functions of sonication
31 amplitude, sonication time and surfactant concentration tested for elaidic acid (EA) coated NPs.

Table S3. Detailed hydrodynamic diameter and transfer yield as functions of sonication
amplitude, sonication time and surfactant concentration tested for stearic acid (SA) coated NPs.

| Dependent<br>Variable | Time Tested<br>(min)  | Conc. Tested<br>(mM)  | Amplitude<br>Tested   | Hydrodynamic<br>Diameter (nm) | Transfer Yield<br>(%) |
|-----------------------|-----------------------|-----------------------|-----------------------|-------------------------------|-----------------------|
| Amplitude             | 4                     | 10                    | Dependent<br>Variable |                               |                       |
| 50%                   |                       |                       |                       | $14.9 \pm 3.4$                | 41.7 ± 3.2            |
| 60%                   |                       |                       |                       | $21.4 \pm 2.5$                | $65.1 \pm 2.0$        |
| 70%                   |                       |                       |                       | $18.6 \pm 1.4$                | $65.2 \pm 1.7$        |
| 80%                   |                       |                       |                       | 17.1 ± 2.1                    | 71.5 ± 3.5            |
| Time (min)            | Dependent<br>Variable | 10                    | 70%                   |                               |                       |
| 2                     |                       |                       |                       | $25.0 \pm 10.4$               | 47.4 ± 2.7            |
| 4                     |                       |                       |                       | $26.4 \pm 8.0$                | $63.3 \pm 1.6$        |
| 6                     |                       |                       |                       | $23.0 \pm 3.5$                | $75.4 \pm 2.5$        |
| Conc. (mM)            | 5                     | Dependent<br>Variable | 70%                   |                               |                       |
| 2.5                   |                       |                       |                       | $17.7 \pm 6.2$                | 37.4 ± 0.3            |
| 5                     |                       |                       |                       | $33.5 \pm 3.8$                | 51.3 ± 2.4            |
| 10                    |                       |                       |                       | $20.8 \pm 2.6$                | $73.3 \pm 4.0$        |

| Dependent<br>Variable | Time Tested<br>(min)  | Conc. Tested<br>(mM)  | Amplitude<br>Tested   | Hydrodynamic<br>Diameter (nm) | Transfer Yield<br>(%) |
|-----------------------|-----------------------|-----------------------|-----------------------|-------------------------------|-----------------------|
| Amplitude             | 4                     | 10                    | Dependent<br>Variable |                               |                       |
| 50%                   |                       |                       |                       | $24.7 \pm 4.8$                | $35.2 \pm 1.3$        |
| 60%                   |                       |                       |                       | $30.6 \pm 2.6$                | $61.0 \pm 2.4$        |
| 70%                   |                       |                       |                       | $26.2 \pm 0.7$                | $62.7 \pm 5.1$        |
| 80%                   |                       |                       |                       | $27.4 \pm 3.3$                | 71.4 ± 3.7            |
| Time (min)            | Dependent<br>Variable | 10                    | 65%                   |                               |                       |
| 2                     |                       |                       |                       | 29.2 ± 3.5                    | 57.3 ± 2.5            |
| 4                     |                       |                       |                       | $31.9\pm3.9$                  | $63.3\pm0.8$          |
| 6                     |                       |                       |                       | $20.7\pm7.4$                  | $67.4 \pm 3.1$        |
| 8                     |                       |                       |                       | $23.2 \pm 2.8$                | $67.2 \pm 2.3$        |
| Conc. (mM)            | 6                     | Dependent<br>Variable | 65%                   |                               |                       |
| 2.5                   |                       |                       |                       | $31.2 \pm 1.2$                | 57.1 ± 3.3            |
| 5                     |                       |                       |                       | $33.5\pm3.7$                  | $66.3 \pm 3.4$        |
| 10                    |                       |                       |                       | $33.2 \pm 7.7$                | $68.4 \pm 1.7$        |
| 15                    |                       |                       |                       | $30.8 \pm 1.4$                | $68.6 \pm 3.2$        |
| 20                    |                       |                       |                       | 23.7±11.1                     | $70.7 \pm 1.9$        |
|                       |                       |                       | 1                     | 1                             |                       |

36 Table S4. Detailed hydrodynamic diameter and transfer yield as functions of sonication
37 amplitude, sonication time and surfactant concentration tested for palmitic acid (PA) coated NPs.

39 Table S5. Detailed hydrodynamic diameter and transfer yield as functions of sonication
40 amplitude, sonication time and surfactant concentration tested for myristic acid (MA) coated
41 NPs.

| Dependent<br>Variable | Time Tested<br>(min)  | Conc. Tested<br>(mM)  | Amplitude<br>Tested   | Hydrodynamic<br>Diameter (nm) | Transfer Yield<br>(%) |
|-----------------------|-----------------------|-----------------------|-----------------------|-------------------------------|-----------------------|
| Amplitude             | 4                     | 10                    | Dependent<br>Variable |                               |                       |
| 50%                   |                       |                       |                       | $24.3 \pm 7.7$                | $70.5 \pm 2.3$        |
| 60%                   |                       |                       |                       | $24.0 \pm 2.7$                | 81.0 ± 3.6            |
| 70%                   |                       |                       |                       | $24.3 \pm 0.3$                | 82.1 ± 3.9            |
| 80%                   |                       |                       |                       | $22.8 \pm 0.6$                | 80.0 ± 1.2            |
| Time (min)            | Dependent<br>Variable | 10                    | 65%                   |                               |                       |
| 1                     |                       |                       |                       | 26.7 ± 1.1                    | 73.3 ± 1.2            |
| 2                     |                       |                       |                       | $24.2 \pm 1.8$                | 82.5 ± 5.6            |
| 4                     |                       |                       |                       | $21.8 \pm 1.0$                | 83.9 ± 1.9            |
| 6                     |                       |                       |                       | $21.4 \pm 0.3$                | $80.4 \pm 2.8$        |
| Conc. (mM)            | 4                     | Dependent<br>Variable | 65%                   |                               |                       |
| 2.5                   |                       |                       |                       | $25.4 \pm 2.8$                | $60.4 \pm 2.1$        |
| 5                     |                       |                       |                       | $24.2 \pm 2.0$                | 67.5 ± 1.8            |
| 10                    |                       |                       |                       | $21.5 \pm 1.9$                | 74.1 ± 2.3            |
| 15                    |                       |                       |                       | $20.9 \pm 1.4$                | 77.3 ± 2.7            |
| 20                    |                       |                       |                       | 21.1 ± 1.1                    | $75.5 \pm 4.4$        |

| Dependent<br>Variable | Time Tested<br>(min)  | Conc. Tested<br>(mM)  | Amplitude<br>Tested   | Hydrodynamic<br>Diameter (nm) | Transfer Yield<br>(%) |
|-----------------------|-----------------------|-----------------------|-----------------------|-------------------------------|-----------------------|
| Amplitude             | 3                     | 5                     | Dependent<br>Variable |                               |                       |
| 50%                   |                       |                       |                       | $23.2 \pm 10.4$               | $58.4 \pm 0.8$        |
| 60%                   |                       |                       |                       | $25.7 \pm 8.6$                | $61.5 \pm 3.6$        |
| 70%                   |                       |                       |                       | $26.5 \pm 2.1$                | 77.4 ± 5.4            |
| 80%                   |                       |                       |                       | $25.6 \pm 2.7$                | $84.5 \pm 3.6$        |
| 90%                   |                       |                       |                       | $24.3 \pm 0.5$                | 87.3 ± 4.1            |
| Time (min)            | Dependent<br>Variable | 5                     | 75%                   |                               |                       |
| 1                     |                       |                       |                       | 37.6 ± 4.8                    | 80.3 ± 4.1            |
| 2                     |                       |                       |                       | 31.6 ± 2.6                    | 86.5 ± 2.6            |
| 3                     |                       |                       |                       | $20.8\pm4.0$                  | 88.2 ± 3.3            |
| 4                     |                       |                       |                       | $28.0 \pm 1.7$                | $84.2 \pm 3.9$        |
| 5                     |                       |                       |                       | $22.4 \pm 9.0$                | 88.5 ± 2.6            |
| Conc. (mM)            | 3                     | Dependent<br>Variable | 75%                   |                               |                       |
| 1.25                  |                       |                       |                       | $34.5 \pm 0.7$                | 70.1 ± 2.8            |
| 2.5                   |                       |                       |                       | 31.6 ± 2.5                    | 74.5 ± 1.7            |
| 5                     |                       |                       |                       | $26.9 \pm 1.7$                | 85.1 ± 4.4            |
| 7.5                   |                       |                       |                       | $25.2 \pm 1.7$                | $88.8 \pm 2.6$        |
| 10                    |                       |                       |                       | $19.2 \pm 0.4$                | 87.6 ± 1.9            |
|                       | 1                     |                       |                       | 1                             | 1                     |

Table S6. Detailed hydrodynamic diameter and transfer yield as functions of sonication
amplitude, sonication time and surfactant concentration tested for lauric acid (LA) coated NPs.

46 Table S7. Detailed hydrodynamic diameter and transfer yield as functions of sonication
47 amplitude, sonication time and surfactant concentration tested for decanoic acid (DA) coated
48 NPs.

| Dependent<br>Variable | Time Tested<br>(min)  | Conc. Tested<br>(mM)  | Amplitude<br>Tested   | Hydrodynamic<br>Diameter (nm) | Transfer Yield<br>(%) |
|-----------------------|-----------------------|-----------------------|-----------------------|-------------------------------|-----------------------|
| Amplitude             | 4                     | 10                    | Dependent<br>Variable |                               |                       |
| 50%                   |                       |                       |                       | $24.4 \pm 2.5$                | $26.7 \pm 3.1$        |
| 60%                   |                       |                       |                       | $27.5 \pm 1.5$                | $30.8 \pm 5.0$        |
| 70%                   |                       |                       |                       | $26.1 \pm 2.3$                | $40.6 \pm 2.4$        |
| 80%                   |                       |                       |                       | $28.4\pm0.6$                  | 59.3 ± 4.2            |
| Time (min)            | Dependent<br>Variable | 10                    | 75%                   |                               |                       |
| 2                     |                       |                       |                       | $28.4 \pm 0.4$                | 55.4 ± 2.0            |
| 4                     |                       |                       |                       | $26.5 \pm 0.6$                | 54.3 ± 2.4            |
| 6                     |                       |                       |                       | $25.1 \pm 0.7$                | 55.0 ± 1.8            |
| 8                     |                       |                       |                       | $25.4\pm0.8$                  | 59.3 ± 3.6            |
| Conc. (mM)            | 4                     | Dependent<br>Variable | 75%                   |                               |                       |
| 2.5                   |                       |                       |                       | 30.4 ± 8.9                    | $38.4 \pm 0.7$        |
| 5                     |                       |                       |                       | $28.9\pm0.7$                  | $40.4 \pm 2.1$        |
| 10                    |                       |                       |                       | $28.5 \pm 0.6$                | $46.4 \pm 1.1$        |
| 15                    |                       |                       |                       | 27.4 ± 1.9                    | 45.6 ± 1.6            |
| 20                    |                       |                       |                       | $28.9 \pm 0.3$                | 53.4 ± 3.0            |

Table S8. Detailed hydrodynamic diameter and transfer yield as functions of sonication
amplitude, sonication time and surfactant concentration tested for sodium monododecyl
phosphate (SDP) coated NPs.

| Dependent<br>Variable | Time Tested<br>(min)  | Conc. Tested<br>(mM)  | Amplitude<br>Tested   | Hydrodynamic<br>Diameter (nm) | Transfer Yield<br>(%) |
|-----------------------|-----------------------|-----------------------|-----------------------|-------------------------------|-----------------------|
| Amplitude             | 3                     | 5                     | Dependent<br>Variable |                               |                       |
| 50%                   |                       |                       |                       | $44.5 \pm 0.5$                | 51.2 ± 3.4            |
| 60%                   |                       |                       |                       | $41.6 \pm 2.4$                | $67.4 \pm 3.9$        |
| 70%                   |                       |                       |                       | $39.1 \pm 2.9$                | $85.6\pm4.6$          |
| 80%                   |                       |                       |                       | $36.2 \pm 0.6$                | $93.1 \pm 4.9$        |
| 90%                   |                       |                       |                       | 39.0 ± 1.0                    | 91.4 ± 5.5            |
| Time (min)            | Dependent<br>Variable | 5                     | 70%                   |                               |                       |
| 1                     |                       |                       |                       | 53.2 ± 3.2                    | 67.4 ± 1.3            |
| 2                     |                       |                       |                       | $43.7 \pm 1.6$                | $79.3 \pm 5.7$        |
| 3                     |                       |                       |                       | $38.7\pm0.8$                  | $90.9\pm4.7$          |
| 4                     |                       |                       |                       | 39.0 ± 1.0                    | $92.7 \pm 3.2$        |
| 5                     |                       |                       |                       | 38.4 ± 2.5                    | 95.2 ± 1.9            |
| Conc. (mM)            | 3                     | Dependent<br>Variable | 70%                   |                               |                       |
| 1.25                  |                       |                       |                       | 54.9 ± 3.3                    | $66.9 \pm 1.1$        |
| 2.5                   |                       |                       |                       | 43.1 ± 2.3                    | $77.3 \pm 2.2$        |
| 5                     |                       |                       |                       | $40.6 \pm 1.2$                | 87.6 ± 3.9            |
| 7.5                   |                       |                       |                       | $34.3\pm0.2$                  | $85.2 \pm 6.7$        |
| 10                    |                       |                       |                       | $23.4 \pm 3.5$                | 90.1 ± 2.3            |
|                       | 1                     | 1                     |                       | 1                             |                       |

Table S9. Detailed hydrodynamic diameter and transfer yield as functions of sonication
amplitude, sonication time and surfactant concentration tested for sodium monododecyl sulfate
(SDS) coated NPs.

| Dependent<br>Variable | Time Tested<br>(min)  | Conc. Tested<br>(mM)  | Amplitude<br>Tested   | Hydrodynamic<br>Diameter (nm) | Transfer Yield<br>(%) |
|-----------------------|-----------------------|-----------------------|-----------------------|-------------------------------|-----------------------|
| Amplitude             | 5                     | 5                     | Dependent<br>Variable |                               |                       |
| 50%                   |                       |                       |                       | $20.9 \pm 3.0$                | $40.8 \pm 0.6$        |
| 60%                   |                       |                       |                       | $20.4 \pm 1.1$                | 50.4 ± 1.2            |
| 70%                   |                       |                       |                       | $19.0 \pm 1.0$                | $64.3 \pm 3.6$        |
| 80%                   |                       |                       |                       | $20.2 \pm 1.6$                | $72.3 \pm 7.4$        |
| 90%                   |                       |                       |                       | $20.3 \pm 0.1$                | $70.7\pm0.9$          |
| Time (min)            | Dependent<br>Variable | 5                     | 70%                   |                               |                       |
| 1                     |                       |                       |                       | $22.6 \pm 10.4$               | 55.2 ± 2.0            |
| 2                     |                       |                       |                       | $20.9\pm2.6$                  | 59.7 ± 1.0            |
| 3                     |                       |                       |                       | $21.9\pm0.2$                  | $73.6\pm4.0$          |
| 4                     |                       |                       |                       | 22.1 ± 1.3                    | $79.1 \pm 0.7$        |
| 5                     |                       |                       |                       | $22.2 \pm 1.5$                | 74.1 ± 1.8            |
| Conc. (mM)            | 3                     | Dependent<br>Variable | 70%                   |                               |                       |
| 1.0                   |                       |                       |                       | $28.1 \pm 1.0$                | 57.5 ± 2.7            |
| 2.5                   |                       |                       |                       | $25.0 \pm 0.5$                | $76.2 \pm 2.1$        |
| 5                     |                       |                       |                       | $20.6\pm0.7$                  | 75.9 ± 3.2            |
| 7.5                   |                       |                       |                       | $19.7\pm0.3$                  | $78.2 \pm 3.1$        |
| 10                    |                       |                       |                       | $16.6 \pm 0.7$                | $76.0 \pm 1.8$        |
|                       | 1                     | 1                     | 1                     |                               | 1                     |

Table S10. Detailed hydrodynamic diameter and transfer yield as functions of sonication
amplitude, sonication time and surfactant concentration tested for sodium
dodecylbenzenesulfonate (SDBS) coated NPs.

| Dependent<br>Variable | Time Tested<br>(min)  | Conc. Tested<br>(mM)  | Amplitude<br>Tested   | Hydrodynamic<br>Diameter (nm) | Transfer Yield<br>(%) |
|-----------------------|-----------------------|-----------------------|-----------------------|-------------------------------|-----------------------|
| Amplitude             | 4                     | 10                    | Dependent<br>Variable |                               |                       |
| 50%                   |                       |                       |                       | $16.4 \pm 3.1$                | $36.3 \pm 0.7$        |
| 60%                   |                       |                       |                       | $15.0 \pm 0.6$                | $58.4 \pm 2.2$        |
| 70%                   |                       |                       |                       | $17.1 \pm 1.5$                | $63.3 \pm 0.4$        |
| 80%                   |                       |                       |                       | $16.2 \pm 1.9$                | $66.6 \pm 1.7$        |
| Time (min)            | Dependent<br>Variable | 10                    | 70%                   |                               |                       |
| 2                     |                       |                       |                       | $21.0 \pm 2.7$                | 53.0 ± 1.7            |
| 4                     |                       |                       |                       | $16.6 \pm 1.9$                | $67.5 \pm 1.6$        |
| 6                     |                       |                       |                       | $15.1 \pm 3.0$                | 68.4 ± 1.6            |
| Conc. (mM)            | 5                     | Dependent<br>Variable | 70%                   |                               |                       |
| 5                     |                       |                       |                       | $18.9 \pm 0.3$                | 45.5 ± 1.4            |
| 10                    |                       |                       |                       | $17.2 \pm 0.8$                | $62.8 \pm 1.0$        |
| 20                    |                       |                       |                       | $15.2 \pm 4.1$                | 66.1 ± 1.4            |
| 30                    |                       |                       |                       | $18.2 \pm 3.4$                | $64.9 \pm 5.5$        |
| 40                    |                       |                       |                       | $17.9 \pm 0.3$                | $64.5 \pm 2.3$        |

62 **Table S11.** Detailed hydrodynamic diameter and transfer yield as functions of sonication 63 amplitude, sonication time and surfactant concentration tested for dodecyltrimethylammonium 64 bromide ( $C_{12}TAB$ ) coated NPs.

| Dependent<br>Variable | Time Tested<br>(min)  | Conc. Tested (mM)     | Amplitude<br>Tested   | Hydrodynamic<br>Diameter (nm) | Transfer Yield<br>(%) |
|-----------------------|-----------------------|-----------------------|-----------------------|-------------------------------|-----------------------|
| Amplitude             | 4                     | 10                    | Dependent<br>Variable |                               |                       |
| 50%                   |                       |                       |                       | $22.3 \pm 4.1$                | $28.7 \pm 3.4$        |
| 60%                   |                       |                       |                       | $19.7 \pm 1.7$                | $33.8 \pm 2.2$        |
| 70%                   |                       |                       |                       | 21.3 ± 1.3                    | 35.5 ± 5.2            |
| 80%                   |                       |                       |                       | $21.5 \pm 0.8$                | $42.8\pm2.3$          |
| Time (min)            | Dependent<br>Variable | 10                    | 75%                   |                               |                       |
| 2                     |                       |                       |                       | $19.6 \pm 1.0$                | $38.5 \pm 0.7$        |
| 4                     |                       |                       |                       | $20.7 \pm 1.0$                | 45.1 ± 1.9            |
| 6                     |                       |                       |                       | $20.3 \pm 2.3$                | $47.4 \pm 1.4$        |
| Conc. (mM)            | 4                     | Dependent<br>Variable | 75%                   |                               |                       |
| 5                     |                       |                       |                       | $34.5 \pm 0.4$                | $30.2 \pm 2.9$        |
| 10                    |                       |                       |                       | $20.7 \pm 1.0$                | $44.6 \pm 1.6$        |
| 20                    |                       |                       |                       | $36.1 \pm 0.6$                | 41.1 ± 3.5            |
| 30                    |                       |                       |                       | $43.8 \pm 11.5$               | $42.6 \pm 2.2$        |
| 40                    |                       |                       |                       | $59.2 \pm 3.4$                | $40.4 \pm 4.5$        |

Table S12. Detailed hydrodynamic diameter and transfer yield as functions of sonication
amplitude, sonication time and surfactant concentration tested for N,N-Dimethyl-Ndodecylglycine betaine (EMPIGEN) coated NPs.

| Dependent<br>Variable | Time Tested<br>(min)  | Conc. Tested<br>(mM)  | Amplitude<br>Tested   | Hydrodynamic<br>Diameter (nm) | Transfer Yield<br>(%) |
|-----------------------|-----------------------|-----------------------|-----------------------|-------------------------------|-----------------------|
| Amplitude             | 5                     | 20                    | Dependent<br>Variable |                               |                       |
| 50%                   |                       |                       |                       | $29.0 \pm 9.8$                | 30.2 ± 2.7            |
| 60%                   |                       |                       |                       | $36.9 \pm 8.1$                | 38.4 ± 1.2            |
| 70%                   |                       |                       |                       | $36.0 \pm 6.9$                | 42.3 ± 3.3            |
| 80%                   |                       |                       |                       | 33.1 ± 13.7                   | $46.3 \pm 4.5$        |
| 90%                   |                       |                       |                       | 38.3 ± 1.9                    | 46.1 ± 2.3            |
| Time (min)            | Dependent<br>Variable | 20                    | 70%                   |                               |                       |
| 2                     |                       |                       |                       | 36.1 ± 0.9                    | 46.4 ± 3.5            |
| 4                     |                       |                       |                       | $33.8 \pm 9.9$                | $42.4 \pm 1.2$        |
| 5                     |                       |                       |                       | $30.8 \pm 7.4$                | $50.5 \pm 2.3$        |
| 6                     |                       |                       |                       | $30.0 \pm 0.9$                | 55.8 ± 3.6            |
| 8                     |                       |                       |                       | $32.1 \pm 0.7$                | $52.8 \pm 2.8$        |
| Conc. (mM)            | 6                     | Dependent<br>Variable | 70%                   |                               |                       |
| 10                    |                       |                       |                       | $56.8 \pm 6.6$                | 37.1 ± 1.3            |
| 20                    |                       |                       |                       | $31.5 \pm 2.9$                | $46.4 \pm 2.6$        |
| 30                    |                       |                       |                       | $27.9 \pm 3.5$                | 54.9 ± 1.9            |
| 40                    |                       |                       |                       | $17.3 \pm 1.5$                | $65.4 \pm 4.3$        |
| 50                    |                       |                       |                       | 21.6 ± 1.0                    | 67.9 ± 3.1            |

## 70 **Table S13.** Total organic carbon (TOC) concentrations of bilayer coated iron oxide NPs (50

## 71 ppm Fe).

| Outer layer             | TOC (ppm)       | Outer layer density<br>(mol/mol Fe <sub>3</sub> O <sub>4</sub> ) <sup>a</sup> | Outer layer density<br>(mol/mol # NPs) <sup>a</sup> | Out layer density<br>(10 <sup>-5</sup> mol/m <sup>2</sup> ) <sup>a</sup> |
|-------------------------|-----------------|-------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------|
| Oleic acid<br>(OA)      | $102.8 \pm 0.3$ | 1.32                                                                          | 4953                                                | 3.99                                                                     |
| Ricinoleic acid<br>(RA) | $100.1 \pm 0.9$ | 1.28                                                                          | 4792                                                | 3.86                                                                     |
| Elaidic acid<br>(EA)    | 85.0 ± 0.2      | 1.04                                                                          | 3917                                                | 3.16                                                                     |
| Stearic acid<br>(SA)    | 99.8 ± 0.9      | 1.27                                                                          | 4777                                                | 3.85                                                                     |
| Palmitic acid<br>(PA)   | 99.4 ± 0.2      | 1.43                                                                          | 5350                                                | 4.31                                                                     |
| Myristic acid<br>(MA)   | 94.3 ± 0.5      | 1.53                                                                          | 5730                                                | 4.62                                                                     |
| Lauric acid<br>(LA)     | 87.2 ± 0.5      | 1.62                                                                          | 6063                                                | 4.89                                                                     |
| Decanoic acid<br>(DA)   | 81.3 ± 0.3      | 1.77                                                                          | 6655                                                | 5.36                                                                     |
| SDP                     | 86.7 ± 0.5      | 1.60                                                                          | 6016                                                | 4.85                                                                     |
| SDS                     | $88.8 \pm 0.4$  | 1.65                                                                          | 6207                                                | 5.00                                                                     |
| SDBS                    | $100.5 \pm 1.9$ | 1.28                                                                          | 4814                                                | 3.88                                                                     |
| C <sub>12</sub> TAB     | 95.0 ± 0.1      | 1.44                                                                          | 5395                                                | 4.35                                                                     |
| EMPIGEN                 | 98.3 ± 1.6      | 1.41                                                                          | 5276                                                | 4.25                                                                     |

72  $\alpha$  Assumes the surface area per oleic acid molecule (*A*) to be 0.2 nm<sup>2</sup>,<sup>1</sup> the radius of IONPs (r) 73 to be 8.1/2=4.05 nm, the density of iron oxide ( $\rho$ ) is 5.17 g/cm<sup>3</sup>. The base oleic acid layer is 74 calculated to be 23.2 mg per 50 mg Fe, which is equal to 0.28 mmol oleic acid/mmol Fe<sub>3</sub>O<sub>4</sub>.

$$Base 0A layer = \frac{(base 0A layer weight on each NP)*Fe concentration}{each NP weight (as Fe)} = \frac{(\# of 0A molecule on each NP)*(molecular weight of 0A)/N_A}{(volume of each NP)*(density of iron oxide)*(percentage of Fe in each NP)} Fe concentration = \frac{(4\pi r^2/A)*(M_w of 0A)/N_A}{((4\pi r^3/_3)*\rho_{Fe_3}o_4*(^{3*M_w of Fe}/_{M_w of Fe_3}o_4)} Fe concentration (1)$$

$$The C content in the base 0A layer = \frac{18*(M_w of C)}{M_w of 0A} base 0A layer content (2)$$

$$The C concentration in the base 0A layer was calculated to be 17.74 mg per 50 mg Fe. By$$
subtracting the C concentration from the total carbon concentration, we can derive the C
concentration in the second layer and thus the mol concentration of second layer.
$$The mol concentration of Fe_3O_4 = \frac{Fe concentration}{3*(M_w of Fe)} = 0.298 \text{ mmol as in 50 ppm Fe} (3)$$

$$Outer layer density (mol/_{mol} Fe_3O_4) = \frac{mol concentration of second layer}{mol concentration of Fe_3O_4} = \frac{mol concentration of fee_3O_4}{mol \# NPs} = \frac{mol concentration of second layer}{mol \# NPs} = 0$$

 $\frac{\text{mol concentration of second layer}}{(\text{surface area of each NP})*(\text{total weight as } Fe_3O_4)/(\text{each NP weight})}$ 

(6)

| Outer layer          | Critical Coagulation Concentration |                        |  |  |
|----------------------|------------------------------------|------------------------|--|--|
|                      | NaCl (mM)                          | CaCl <sub>2</sub> (mM) |  |  |
| Oleic acid (OA)      | 710                                | 10.6                   |  |  |
| Ricinoleic acid (RA) | 746                                | 10.8                   |  |  |
| Elaidic acid (EA)    | 260                                | 7.4                    |  |  |
| Stearic acid (SA)    | 452                                | 9.3                    |  |  |
| Palmitic acid (PA)   | 257                                | 5.3                    |  |  |
| Myristic acid (MA)   | 94                                 | 3.9                    |  |  |
| Lauric acid (LA)     | 16                                 | 0.5                    |  |  |
| Decanoic acid (DA)   | 27                                 | 1.6                    |  |  |
| SDP                  | 250                                | 3.6                    |  |  |
| SDS                  | 45                                 | 1.4                    |  |  |
| SDBS                 | 46                                 | 6.0                    |  |  |
| C <sub>12</sub> TAB  | 555                                | 11.1                   |  |  |
| EMPIGEN              | 766                                | 11.3                   |  |  |

**Table S14.** Summary of CCC values for bilayer coated iron oxide NPs.

## References

90 91 92 A. G. Roca, M. P. Morales, K. O'Grady and C. J. Serna, *Nanotechnology*, 2006, 17, 2783. 1.