Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2015

Heteroaggregation of Bare Silver Nanoparticles with Clay Minerals

Supporting Information

Jibin Liu, Yu Sik Hwang¹ and John J. Lenhart*

Department of Civil, Environmental and Geodetic Engineering

The Ohio State University, Columbus, OH 43210, United States

¹ Future Environmental Research Center, Korea Institute of Toxicology, Jinju 660-844, Republic of Korea

*Corresponding Author, Tel.: (614) 688-8157; Fax: (614) 292-3780; Email: lenhart.49@osu.edu

References	Type of Clay Minerals	Saturating Cations	Electrolyte	рН	Aggregation Experiments
1	Kaolinite from Zettlitz kaolin (Germany)	Na ⁺	NaCl	4–8	Huge aggregates were formed only below pH~7 in kaolinite suspensions, with CCC around 1 mM NaCl. The CCC measured in the alkaline region was ~ 100 mM NaCl.
2	Montmorillonite from Wyoming bentonite (Swy-1 and Swy-2 samples)	Na ⁺	NaCl	4-8.5	The CCC of montmorillonite suspensions was reported as $\sim 25 \text{ mM}$ and $\sim 100 \text{ mM}$ NaCl at pH ~ 4 and ~ 8 , respectively. The CCC at the pH of PZC of edges (~ 6.5) approximated as \sim 50mM NaCl.
3	Montmorillonite from Cheto, Arizona (SAz-1) and kaolinite from Georgia (KGa-1). Both were obtained from The Clay Minerals Society's Source Clays Repository.	Na ⁺ , Ca ²⁺ , and Mg ²⁺	NaCl, CaCl ₂ , or MgCl ₂ to match the saturating cations of the clays.	5–10	The CCC of all types of clays were found to be pH-dependent. The effect of pH was greater for the kaolinite than the montmorillonite.
4	Silver Hill illite (IMt-1) from the Source Clays Repository of the Clay Mineral Society	Na^+ and K^+	NaClO ₄ and KClO ₄ for Na- and K-illite, respectively.	6–11	K ⁺ was three times more effective than Na ⁺ for flocculating illite due to greater surface complexation of K-illite.

Table S1. Summary	of the	literature	on clay	^r mineral	aggregation
-1			- 1		

S. Goldberg and R.A. Glaubig, *Clays Clay Min.*, 1987, **35**, 220-227
D. Hesterberg and A. Page, *Soil Sci.Soc.Am. J.*, 1990, **54**, 735-739.

	Homoaggregation	Heteroaggregation				
AgNP	2mL	4mL				
Na-MONT	0.2mL	0.4mL				
Ca-MONT	0.1mL	0.2mL				
Na-illite	2mL	4mL				
Ca-illite	1mL	2mL				

Table S2. Volume of stock suspension used to prepare working particle suspensions. In each case the working suspension volume was 50 mL.

			d <i>r</i> /dt (nm/s)	
Electrolyte	Bare- AgNP	Na- MONT	Ca- MONT	Na-illite	Ca-illite
NaCl	0.10	5.53	4.41	0.53	1.24
NaNO ₃	0.12	7.52	5.47	1.04	1.06
CaCl ₂	0.14	6.83	2.66	1.33	1.35

Table S3. Values of the dr/dt for single component systems used to determine k_{rapid} .

	dr/dt (nm/s)				
Electrolyte	AgNP +	AgNP +	AgNP +	AgNP +	
	Na-MONT	Ca-MONT	Na-illite	Ca-illite	
NaCl	5.73	5.60	0.63	1.41	
NaNO ₃	4.92	4.57	1.04	1.16	
CaCl ₂	7.44	2.99	1.24	1.21	

Table S4. Values of the dr/dt for binary component systems used to determine k_{rapid} .

used to determine k _{rapid} .						
Electrolyte	AgNP +	AgNP +	AgNP +	AgNP +		
	Na-MONT	Ca-MONT	Na-illite	Ca-illite		
NaCl	5.73	5.60	0.63	1.41		
NaNO ₃	4.92	4.57	1.04	1.16		
CaCl ₂	7.44	2.99	1.24	1.21		

Table S5. Values of the mean count rates for systems with dr/dt for binary component systems

Figure S1. Characterization of the silver nanoparticles suspended in background NaCl/NaHCO₃ electrolyte: (a) TEM image and (b) UV-vis absorption spectrum.

Figure S2. TEM image of clay mineral samples suspended in background NaCl/NaHCO₃ electrolyte: (a) montmorillonite and (b) illite.

Figure S3. Inverse stability ratio (1/W) of Na- and Ca-montmorillonite as a function of NaCl and CaCl₂ concentrations.

Figure S4. Inverse stability ratio (1/W) of Na- and Ca-illite as a function of NaCl and CaCl₂ concentrations.

Figure S5. Example aggregation profiles for (a) AgNPs (b) Na-Mont and (c) AgNPs + NaMont used to determine stability plots shown in Figure 7a.

Figure S6. TEM images of heteroaggregated silver nanoparticles with Na-montmorillonite at 10mM NaCl showing (A) bare Na-montmorillonite and (B) isolated silver nanoparticles.