Supporting Information for

Impact of Pahokee Peat Humic Acid and Buffer Identity on Goethite Aggregation and Reactivity

Environmental Science: Nano

Amanda M. Vindedahl¹, William A. Arnold², and R. Lee Penn^{1*}

¹Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455-0431

²Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, 500 Pillsbury Dr. SE, Minneapolis, MN 55455-0116

Publication Date

Page

Section S1: Synthetic Goethite Characterization by X-ray Diffraction	S3				
Section S2: Reactor Preparation Conditions	S3				
Section S3: Other Experimental Data	S6				
Section S4: T-tests for Fe(II) Equilibration Times – Sequential Injections	S 8				
Section S5: Pseudo-First Order Plots of Sequential 4-CINB Degradations	S9				
Section S6: Goethite Particle Size Analysis of Sequential 4-CINB Degradations	S10				
Section S7: Goethite Statistical Analysis of Sequential 4-CINB Degradations	S12				
Section S8: Other Experimental Data for Sequential 4-CINB Degradations	S14				
Section S9: Calculation of Predicted Length of New Goethite via Mass Balance	S15				
Table S1: 4-CINB degradation rate and aggregate size with varying equilibration time and order of addition	S3				
Table S2: t-tests for 4-CINB degradation rates with varying preparation conditions	S4				
Table S3: t-tests for aggregate size with varying preparation conditions					
Table S4: 4-CINB degradation control experiments	S6				

Table S5: Zeta potential, electrophoretic mobility, and PPHA adsorption measurements	S7
Table S6: t-tests for 4-CINB degradation rates for sequential injections	S 8
Table S7: F-tests for goethite statistical analysis of sequential injections	S12
Table S8: t-tests for goethite statistical analysis of sequential injections	S13
Figure S1: XRD pattern of stock goethite suspension	S3
Figure S2: Average aggregate size with varying PPHA concentration	S6
Figure S3: Aqueous Fe(II) concentration with varying PPHA concentration	S 7
Figure S4: 4-CINB degradation kinetics in sequential injection experiments	S9
Figure S5: Particle size distribution histograms in sequential experiments – MOPS	S10
Figure S6: Particle size distribution histograms in sequential experiments – NaHCO ₃	S11
Figure S7: XRD patterns of mineral solids after each 4-CINB degradation	S14
Figure S8: Aqueous Fe(II) concentration after each 4-ClNB degradation	S15

Section S1: Synthetic Goethite Characterization by X-ray Diffraction

Figure S1: XRD pattern of the pre-reaction goethite suspension and PDF stick patterns of goethite (orange, #29-0713) and hematite (dark red, #33-0664).

Section S2: Reactor Preparation Conditions

Table S1: Average goethite nanoparticle aggregate size and rate of 4-ClNB degradation with varying equilibrium

Equilibration Time	4-CINB Degrada	tion Rate (min ⁻¹) ^a	Average Goethite Aggregate Size (nm) ^k			
	Fe(II)/PPHA	PPHA/Fe(II)	Fe(II)/PPHA	PPHA/Fe(II)		
0 s	0.0344 =	± 0.0018	2900 ± 1600			
20 s	0.0223 ± 0.0020	0.0299 ± 0.0023	2800 ± 2100	4500 ± 2300		
21 h	0.0273 ± 0.0009	0.0358 ± 0.0040	3200 ± 3200	2800 ± 2200		

^aErrors represent 95% confidence intervals of triplicate trials

^bErrors represent standard deviation of duplicate trials of 18 measurements

Statistical Analysis: t-test Results

4-CINB Degradation Rates

Table S2: Statistical analysis of 4-CINB degradation rates under each of the reactor preparation conditions. T-tests were calculated assuming equal
variances. Abbreviations used: equilibration time (Equil. Time); observations (Obs); hypothesized mean difference (Hypoth. Mean Diff.).

Equil. Time	Order of Addition	Mean k (min ⁻¹)	Variance	Obs	Pooled Variance	Hypoth. Mean Diff.	df	t Stat	P(T<=t) one-tail	t Critical one-tail	P (T<=t) two-tail	t Critical two-tail
0s	NA	0.0344	0.000292	3	0.000186	0	4	1.00	0 160	2.12	0 228	2 79
20s	Fe(II), PPHA	0.0223	8.04E-5	3	0.000180	0	4	1.09	0.109	2.15	0.338	2.78
0s	NA	0.0344	0.000292	3	0.000301	0	1	0 270	0 307	2 13	0 794	2 78
20s	PPHA, Fe(II)	0.0299	0.000489	3	0.000391	0	4	0.279	0.397	2.15	0.794	2.78
0s	NA	0.0344	0.000292	3	0.000202	0	1	0.500	0.310	2 1 2	0.638	2 78
21h	Fe(II), PPHA	0.0273	0.000293	3	0.000292	0	4	0.309	0.319	2.13	0.038	2.78
0s	NA	0.0344	0.000292	3	0.000530	0	1	0.0774	0.471	2 13	0.942	2 78
21h	PPHA, Fe(II)	0.0358	0.000786	3	0.000339	0	4	0.0774	0.471	2.15	0.942	2.78
20s	Fe(II), PPHA	0.0223	8.04E-5	3	0.000285	0	1	0.551	0 305	2 13	0.611	2 78
20s	PPHA, Fe(II)	0.0299	0.000489	3	0.000285	0	4	0.551	0.303	2.13	0.011	2.78
20s	Fe(II), PPHA	0.0223	8.04E-5	3	0.000186	0	1	0.448	0 339	2 13	0.677	2 78
21h	Fe(II), PPHA	0.0273	0.000293	3	0.000180 0	0	т	0.++0	0.557	2.15	0.077	2.76
20s	Fe(II), PPHA	0.0223	8.04E-5	3	0.000/33	0	1	0 798	0.235	2 13	0.469	2 78
21h	PPHA, Fe(II)	0.0358	0.000786	3	0.000433	0	4	0.798	0.233	2.15	0.409	2.78
20s	PPHA, Fe(II)	0.0299	0.000489	3	0 000391	0	1	0 161	0.440	2 13	0.880	2 78
21h	Fe(II), PPHA	0.0273	0.000293	3	0.000391	0	4	0.101	0.440	2.15	0.880	2.78
20s	PPHA, Fe(II)	0.0299	0.000489	3	0.000638	0	1	0.280	0 303	2 13	0 787	2 78
21h	PPHA, Fe(II)	0.0358	0.000786	3	0.000038	U	4	0.209	0.395	2.13	0.767	2.70
21h	Fe(II), PPHA	0.0273	0.000293	3	0.000530	0	1	0.452	0.337	2 13	0.675	2 78
21h	PPHA, Fe(II)	0.0358	0.000786	3	0.000559	U	4	0.432	0.337	2.13	0.075	2.70

Aggregate Size

Table S3: Statistical analysis average aggregate size under each of the reactor preparation conditions. T-tests were calculated assuming equal variances, unless where noted (*, unequal variances). Abbreviations used: equilibration time (Equil. Time); observations (Obs); hypothesized mean difference (Hypoth. Mean Diff.)

Equil. Time	Order of Addition	Mean Dia. (nm)	Variance	Obs	Pooled Variance	Hypoth. Mean Diff.	df	t Stat	P(T<=t) one-tail	t Critical one-tail	P (T<=t) two-tail	t Critical two-tail
0s	NA	2900	107989	2	65016	0	ſ	0 202	0.402	2.02	0.804	4.20
20s	Fe(II), PPHA	2800	23844	2	03910	0	Ζ	0.285	0.402	2.92	0.804	4.30
0s	NA	2900	107989	2	500450	0	n	2.00	0.0850	2.02	0 172	4 20
20s	PPHA, Fe(II)	4500	1090912	2	399430	0	Ζ	2.09	0.0839	2.92	0.172	4.50
0s	NA	2900	107989	2	21/2705	0	n	0.102	0.422	2.02	0.866	4 20
21h	Fe(II), PPHA	3200	4179422	2	2143703	0	Ζ	0.192	0.433	2.92	0.800	4.30
0s	NA	2900	107989	2	1210102	0	n	0.0741	0 474	2.02	0.049	4.20
21h	PPHA, Fe(II)	2800	2330377	2	1219185	0	Ζ	0.0741	0.474	2.92	0.948	4.50
20s	Fe(II), PPHA	2800	23844	2	557270	0	n	2.26	0.0750	0.0750	0.152	4 20
20s	PPHA, Fe(II)	4500	1090912	2	551510	0	Ζ	2.20	0.0739	0.0739	0.132	4.30
20s	Fe(II), PPHA	2800	23844	2	NA*	0*	1*	0 244*	0 424*	6 21*	0 848*	10 7*
21h	Fe(II), PPHA	3200	4179422	2			1.	0.244	0.424	0.31	0.848	12.7*
20s	Fe(II), PPHA	2800	23844	2	1177111	0	\mathbf{r}	0.00842	0.407	2 02	0.004	4 20
21h	PPHA, Fe(II)	2800	2330377	2	11//111	0	2	0.00642	0.497	2.92	0.994	4.30
20s	PPHA, Fe(II)	4500	1090912	2	2625167	0	ſ	0.824	0.248	2 02	0.407	4 20
21h	Fe(II), PPHA	3200	4179422	2	2033107	0	Z	0.824	0.248	2.92	0.497	4.30
20s	PPHA, Fe(II)	4500	1090912	2	1710644	0	r	1.20	0 162	2.02	0 2 2 2	4 20
21h	PPHA, Fe(II)	2800	2330377	2	1/10044	0	2	1.30	0.102	2.92	0.325	4.30
21h	Fe(II), PPHA	3200	4179422	2	2254800	0	2	0.201	0.420	2 02	0.850	4 20
21h	PPHA, Fe(II)	2800	2330377	2	5254099	U	2	0.201	0.430	2.72	0.039	4.30

Section S3: Other Experimental Data

4-CINB Degradation Control Experiments

Table S4: Average rate of 4-CINB degradation in the presence of goethite only, Fe(II) only, and Fe(II) and various concentrations of PPHA in either 25 mM MOPS or 10 mM NaHCO₃.

Buffer	Species Present	k _{4-CINB} (min ⁻¹)
	goethite	-0.0022 ± 0.0015^{a}
	Fe(II)	0.0014 ± 0.0013^{b}
MODE	goethite, Fe(II)	$0.1507 \pm 0.0009^{a,c}$
MOPS	Fe(II), 2 ppm PPHA	0.0004 ± 0.0012^{b}
	Fe(II), 10 ppm PPHA	$0.0002 \pm 0.0009^{\rm b}$
	Fe(II), 50 ppm PPHA	0.0002 ± 0.0010^{b}
	goethite	-0.0022 ± 0.0012^{a}
	Fe(II)	0.0042 ± 0.0056^{a}
Nauco	goethite, Fe(II)	$0.0126 \pm 0.0022^{a,c}$
NaHCO ₃	Fe(II), 2 ppm PPHA	-0.0009 ± 0.0076^{a}
	Fe(II), 10 ppm PPHA	0.0058 ± 0.0055^{a}
	Fe(II), 50 ppm PPHA	0.0009 ± 0.0016^{a}

^aError represents 95% confidence intervals of duplicate trials

^bErrors represent 95% confidence intervals of triplicate trials

^cReported in manuscript as 0 ppm OC_{PPHA}

Variation of DLS Measurements

Figure S2: Average nanoparticle diameter of 0.325g/L goethite in (a) 25 mM MOPS and (b) 10 mM NaHCO₃ during reaction with 1.0 mM Fe(II) and 100 μ M 4-ClNB. Open circles represent the average values that are above the quantitative limit of the instrumentation and grayed circles are within the quantitative range.

Figure S3: Aqueous Fe(II) concentration after 21 hours of equilibration in suspensions prepared with varying concentration of PPHA and with an initial Fe(II) concentration of 1.0 mM Fe(II) in the absence (open circles) and presence (closed circles) of 0.325 g/L goethite in (a) 25 mM MOPS and (b) 10 mM NaHCO₃. Adsorbed Fe(II), quantified as the difference in aqueous Fe(II) in the absence and presence of goethite, at each PPHA concentration is given in (c) for both buffers.

Zeta Potential, Electrophoretic Mobility, and Adsorbed PPHA

Table S5: Zeta potential, electrophoretic mobility, and adsorbed organic carbon measurements (before 4-CINB degradation initiation) of 0.325 g/L goethite and 1.0 mM Fe(II) in in the presence of PPHA suspended in 25 mM MOPS and 10 mM NaHCO₃ pH 7 buffers.

Buffer	[OC] (ppm)	Electrophoretic Mobility $\left(\frac{micron}{second}\right) / \left(\frac{Volt}{cm}\right)$	Zeta Potential (mV)	Adsorbed OC _{PPHA} (%)
MOPS	0 10	3.1 ± 0.1 -2.0 ± 0.2	39.9 ± 1.6 -25.0 ± 0.9	N/A nd
	30	$-2.4 \pm 0.0_4$	-31.0 ± 0.5	nd
	0	0.6 ± 0.1	7.3 ± 2.0	N/A
NaHCO ₃	10	-2.2 ± 0.1	-28.5 ± 1.8	14
	30	-2.2 ± 0.1	-28.3 ± 1.7	59

nd - TOC signal from MOPS prevented quantification

Section S4: T-tests for Fe(II) Equilibration Times – Sequential Injections

Table S6: Statistical analysis of 4-CINB degradation rates of Fe(II) equilibration times for each buffer: 21 hours used in all experiments except the sequential injection experiments where 19 hours (MOPS) and 15 hours (NaHCO₃) were used instead. T-tests were calculated assuming equal variances.

	Μ	OPS	NaHCO ₃		
	21h	19h	21h	15h	
Mean	0.0162	0.0136	0.0109	0.0108	
Variance	1.4E-05	2.45E-07	7.20E-07	4.21E-06	
Observations	2	2	2	2	
Pooled Variance	7.15	5E-06	2.46E-06		
Hypothesized Mean Difference	0		0		
df	2		2		
t Stat	0.	973	0.0956		
P(T<=t) one-tail	0.	217	0.4	66	
t Critical one-tail	2	.92	2.92		
P(T<=t) two-tail	0.433		0.933		
t Critical two-tail	4	.30	4.30		

Section S5: Pseudo-First Order Plots of Sequential 4-CINB Degradation

Figure S4: Pseudo-first order plots of 4-ClNB degradation by 0.325 g/L goethite and 1.0 mM Fe(II) in the presence of 10 ppm PPHA in pH 7 (a) 25 mM MOPS and (b) 10 mM NaHCO₃ buffer. 4-ClNB was allowed to completely degrade for each injection: 1 (black circles), 2 (red squares), 3 (green diamonds), 4 (blue triangles), and 5 (pink X).

Section S6: Goethite Particle Size Analysis of Sequential 4-CINB Degradations

Figure S5: Histograms of the normalized frequency of length and width of goethite nanoparticles after (a, b) 1 injection of 4-ClNB, (c, d) 3 injections of 4-ClNB, and (e, f) 5 injections of 4-ClNB in 25 mM MOPS and 10 ppm OC PPHA. Figure insets list the average length or width, standard deviation, and number of measurements.

Figure S6: Histograms of the normalized frequency of length and width of goethite nanoparticles after (a, b) 1 injection of 4-ClNB, (c, d) 3 injections of 4-ClNB, and (e, f) 5 injections of 4-ClNB in 10 mM NaHCO₃ and 10 ppm OC PPHA. Figure insets list the average length or width, standard deviation, and number of measurements.

Buffer	Particle Dimension	Sample	Mean	Variance	Observations	df	F	P(F<=f) one- tail	F Critical one-tail
		Stock	89.0	1221	460	459	1.22	0.0104	1 17
		Injection 1	103	1485	431	430	1.22	0.0194	1.1/
	Longth	Injection 1	103	1485	431	430	170	2 10E 9	1 17
	Lengui	Injection 3	129	2521	443	442	170	2.101-0	1.17
		Injection 3	129	2521	443	442	1 08	A 72E 11	1 10
MODE		Injection 5	179	5001	286	285	1.90	4./31-11	1.19
MOPS		Stock	10.0	17.8	460	459	1.20	0.0276	1 17
		Injection 1	9.1	14.8	431	430	1.20	0.0270	1.17
		Injection 1	9.1	14.8	431	430	1.40	4.01E-5	1 17
	Width	Injection 3	12.3	21.6	443	442	1.40		1.1/
		Injection 3	12.3	21.6	443	442	1.50	2.550.5	1.20
		Injection 5	11.5	13.8	286	285	1.56	2.33E-3	
		Stock	89.0	1221	460	459	1.00	0.00282	1.16
		Injection 1	102	1574	502	501	1.29		
	T d	Injection 1	102	1574	502	501	1 1 2	0.110	1.16
	Length	Injection 3	122	1758	483	482	1.12	0.110	1.10
		Injection 3	122	1758	483	482	2.45	0.025.21	1 17
		Injection 5	189	4315	381	380	2.45	9.93E-21	1.1/
NaHCO ₃		Stock	10.0	17.8	460	459	1.01	0.470	1.16
		Injection 1	11.1	17.9	502	501	1.01	0.470	1.10
	W 7: 441.	Injection 1	11.1	17.9	502	501	1.25	0.00717	1.16
	Width -	Injection 3	10.0	14.3	483	482	1.23	0.00/1/	1.10
		Injection 3	10.0	14.3	483	482	1.24	0.0135	1 17
		Injection 5	11.0	17.7	381	380	1.24		1.1/

Table S7: Results of F tests for each nanoparticle dimension in each buffer comparing sequential 4-CINB injections.

Section S7: Goethite Statistical Analysis of Sequential 4-CINB Degradations

Table S8: Results of t-tests for each nanoparticle dimension in each buffer comparing sequential 4-CINB injections. Pooled variance is NA when the t-test is performed assuming unequal variances and has a value when the t-test is performed assuming equal variances.

Buffer	Particle Dimension	Sample	Mean	Variance	Obs	Pooled Variance	Hypoth. Mean Diff.	df	t Stat	P(T<=t) one-tail	t Critical one-tail	P (T<=t) two-tail	t Critical two-tail
		Stock Inject. 1	89.0 103	1220 1485	460 431	NA	0	866	-5.77	5.56E-9	1.65	1.11E-8	1.96
	Length	Inject. 1 Inject. 3	103 129	1485 2521	431 443	NA	0	827	8.41	8.82E-17	1.65	1.76E-16	1.96
		Inject. 3 Inject. 5	129 180	2521 5001	443 286	NA	0	469	10.4	2.24E-23	1.65	4.48E-23	1.97
MOPS		Stock Inject. 1	10.0 9.1	17.7 14.8	460 431	NA	0	888	3.42	0.00033	1.65	0.000659	1.96
	Width	Inject. 1 Inject. 3	9.1 12.3	14.8 21.6	431 443	NA	0	850	11.0	7.44E-27	1.65	1.49E-26	1.96
		Inject. 3 Inject. 5	12.3 11.5	21.6 13.8	443 286	NA	0	694	-2.38	0.00883	1.65	0.0177	1.96
		Stock Inject. 1	89.0 102	1220 1573	460 502	NA	0	959	-5.56	1.74E-8	1.65	3.48E-8	1.96
	Length	Inject. 1 Inject. 3	102 122	1573 1758	502 483	NA	0	974	7.48	8.10E-14	1.65	1.62E-13	1.96
NoHCO .		Inject. 3 Inject. 5	122 189	1758 4315	483 381	NA	0	614	17.3	2.02E-55	1.65	4.04E-55	1.96
Nanco ₃		Stock Inject. 1	10.0 11.1	17.7 17.9	460 502	17.8	0	960	3.92	4.80E-5	1.65	9.6E-5	1.96
	Width	Inject. 1 Inject. 3	11.1 10.0	17.9 14.3	502 483	NA	0	978	4.29	9.77E-6	1.65	1.95E-5	1.96
	-	Inject. 3 Inject. 5	10.0 11.0	14.3 17.7	483 381	NA	0	772	-3.48	0.000269	1.65	0.000539	1.96

Section S8: Other Experimental Data for Sequential 4-CINB Degradations

Nanoparticle Composition After Each 4-ClNB Degradation

Figure S7: XRD patterns of the pre-reaction goethite suspension (grey) and the dried suspensions after each of the five 4-CINB degradation reactions (1-black, 2-red, 3-green, 4-blue, and 5-pink) in pH 7 (a) 25 mM MOPS and (b) 10 mM NaHCO₃. PDF stick patterns of goethite (orange, #29-0713) and hematite (dark red, #33-0664) are also displayed.

Figure S8: Final aqueous Fe(II) concentration after complete 4-ClNB degradation with 0.325 g/L goethite, 1.0 mM initial Fe(II), and 10 ppm PPHA in pH 7 25 mM MOPS (open circles) and 10 mM NaHCO₃ (closed circles) buffer.

Section S9: Calculation of Predicted Length of New Goethite by Mass Balance

Assumption: Goethite nanoparticles grew only in the length direction upon reaction with 4-CINB

- 1. Moles of 4-CINB reduced: A
- 2. Moles of electrons used for reduction: B = 6 x A
- 3. Mass of newly formed goethite: $C = B \times 88.86 \text{ g/mol}$
- 4. Total mass of goethite: M = X + C
- 5. Ratio of new goethite to total mass: R = (C+X)/X
- 6. Predicted length: $L2 = R \times L1$

X: Mass of goethite in previous injection

L1: Average length of goethite in previous injection

L_{actual}: Mean value of goethite length from TEM analysis

Buffer	Injection	A (umol)	B (umol)	C (mg)	M (mg)	R	L1 (nm)	L2 (nm)	Lactual
MOPS	1	12.1	72.6	6.45	45.8	1.16	89	104	103
	3	24.2	145.2	12.9	58.7	1.28	103	132	129
	5	48.4	290.4	25.8	84.5	1.44	103	149	179
	1	12.1	72.6	6.45	45.8	1.16	89	104	10
NaHCO ₃	3	24.2	145.2	12.9	58.7	1.28	102	131	122
	5	48.2	289.2	25.7	84.4	1.44	102	147	189