Supporting Information for:

Influence of a Polymer Sunscreen Additive on the Transport and Retention of

Titanium Dioxide Nanoparticles in Water-Saturated Porous Media

Jessica Englehart, Bonnie A. Lyon, Matthew D. Becker¹, Yonggang Wang, Linda M.

Abriola, Kurt D. Pennell*

Department of Civil and Environmental Engineering, Tufts University, 200 College Avenue,

Medford, Massachusetts 02155, USA

*Corresponding author:

Kurt D. Pennell, PhD, PE, BCEE Department of Civil & Environmental Engineering Tufts University 200 College Avenue Medford, MA 02155 Tel: 617-627-3099 Fax: 617-627-3994 Email: kurt.pennell@tufts.edu

¹ Current address: John and Willie Leone Family Department of Energy and Mineral Engineering and EMS Energy Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

Figure S1. Transmission electron microscope (TEM) images of (a, c) $nTiO_2$ alone and (b, d) $nTiO_2$ with 3 mg/L Carbomer. Samples were prepared at pH 7.5 in 1 mM HEPES buffer.

DLVO and XDLVO calculations.

The mechanisms leading to particle aggregation in a nano-TiO₂ suspension are commonly described using Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The total interaction energy (E_{total}) between two particles can be described as the sum of the electrical double-layer repulsion energy (E_{edl}) and van der Waals attraction energy (E_{v}).

$$E_{total} = E_{edl} + E_{v} \tag{S1}$$

The E_{total} can be calculated for the interaction between two nanoparticles (two spheres) or between a nanoparticle and a sand grain (a sphere and a plane). In the case of a nanoparticlenanoparticle interaction, the equation for calculating the electrical double-layer repulsion energy (E_{edl-NN}) is shown below.¹

$$E_{edl-NN} = \frac{64\pi n_c kTa}{\kappa^2} \tanh^2 \left(\frac{ze\psi_p}{4kT}\right) e^{(-\kappa D)}$$
(S2)

where n_c is the number of cations in solution, k is the Boltzmann constant, T is the absolute temperature, a is the particle radius, κ is the Debye-Huckel reciprocal length parameter, z is the charge number, e is the characteristic charge of an electron, ψ_p is the surface potential (zeta potential) of the particle, and D is the distance between the two surfaces. The Debye-Huckel reciprocal length parameter, κ , can be calculated using the following equation:

$$\kappa = \left(\frac{2000e^2 N_A I_C}{\varepsilon_0 \varepsilon_r kT}\right)^{1/2} \tag{S3}$$

where ε_0 is the permittivity of a vacuum, ε_r is the relative dielectric constant of water (78.54), N_A is Avogadro's number, and I_C is the ionic strength. The equation for calculating the van der Waals attraction energy between two particles (E_{v-NN}) is shown below:

$$E_{\nu-NN} = \frac{-A_{NN}a}{12D} \left[1 - \frac{bD}{\lambda} \ln\left(1 + \frac{\lambda}{bD}\right) \right]$$
(S4)

where A_{NN} is the Hamaker constant for TiO₂-water-TiO₂ (26 x 10⁻²⁰ J)², *b* is a constant with a value of 5.32, and λ is the characteristic wavelength for the interaction (100 nm).^{2, 3}

While it is important to understand the attractive or repulsive relationship among a suspension of nanoparticles, the interaction between a nanoparticle and a grain of sand generates a better understanding of nanoparticle transport and retention in a porous medium. A sphere-

plane interaction is used to describe the relationship between a nanoparticle and a grain of sand due to the multiple order of magnitude size difference between these objects (e.g., a 100 nm particle interacting with a 300 μ m grain of sand). The larger sand grain is represented by a plane, and the nanoparticle is represented by a sphere. Guzman et al.⁴ developed a set of DLVO equations to describe the interaction between a nanoparticle and a grain of sand (Equations S5-S6). This method uses the surface element integration technique described by Bhattacharjee and Elimelech.⁵ Equation S5 can be used to calculate the electrical double layer repulsion energy between a nanoparticle and a grain of sand (E_{edl-NS}).

$$E_{edl-NS} \qquad (S5)$$

$$= \pi \epsilon_0 \epsilon_r \kappa \left(\psi_p^2 + \psi_s^2\right) \times \int_0^a \left\{ - \coth\left[\kappa \left(D + a - a \sqrt{1 - \left(\frac{r}{a}\right)^2}\right)\right] + c \epsilon_0 r \, dr$$

$$r \, dr$$

where ψ_s is the surface potential of the sand. The van der Waals attraction energy between a nanoparticle and sand grain surface, E_{v-NS} , can be calculated as:

$$E_{\nu-NS} = -\frac{A_{NS}}{6} \left[\frac{a}{D} + \frac{a}{D+2a} + \ln\left(\frac{D}{D+2a}\right) \right]$$
(S6)

The Hamaker constant for the silica-water-TiO₂ system (A_{NS}) is 4.5 x 10⁻²⁰ J.² These two values (E_{edl} and E_v) are combined to generate a net energy, E_{total} , which is then used to generate an interaction energy profile. Negative values indicate a net attractive energy, and net positive values indicate a net repulsive energy. The zeta potential of sand was estimated to be -35 mV and -52 mV at pH 5 and pH 7.5, respectively, based on previously reported values.⁶

In addition to the electronic double layer repulsive energy and van der Waals attractive energy of traditional DLVO theory, XDLVO calculations of the total interaction energy (E_{total}) include the osmotic and elastic-steric repulsion energies induced by the presence of a polymer layer coating a colloid or nanoparticle. The overlap of the polymer layers for two approaching particles increases the osmotic pressure due to a higher local polymer concentration, which leads to increased repulsion between particles. This is known as the osmotic repulsion energy, E_{osm} . The second additional force considered in XDLVO is the elastic-steric repulsion energy, E_{elas} . Compression of the adsorbed polymer layer below the original thickness of the layer leads to a loss of entropy and subsequent elastic repulsion. The values of E_{osm-NN} and $E_{elas-NN}$ were calculated using Equations S7-S8.⁷ The values used in XDLVO calculations for this study are listed in Table S1.

$$E_{osm-NN} = 0 \qquad \qquad for \ 2L \le D \qquad (S7)$$

$$E_{osm-NN} = \frac{a4\pi kT}{V_w} \Phi_p^2 \left(\frac{1}{2} - \chi\right) \left(L - \frac{D}{2}\right)^2 \qquad \qquad for \ L \le D < 2L$$

$$E_{osm-NN} = \frac{a4\pi kT}{V_w} \Phi_p^2 \left(\frac{1}{2} - \chi\right) L^2 \left(\frac{D}{2L} - \frac{1}{4} - \ln\left(\frac{D}{L}\right)\right) \qquad \qquad for \ D < L$$

where V_w is the volume of the solvent molecule (water in this case), Φ_p is the calculated volume fraction of polymer within the brush layer, L is the thickness of the brush layer (10 nm). The volume fraction of polymer, Φ_p , can be estimated using Equation S8:

$$\Phi_p = \frac{3\Gamma_{max}a^2}{\rho_p[(L+a)^3 - a^3]}$$
(S8)

In Equation S8, Γ_{max} is the surface excess, which was estimated to be 2 mg/m² for this study based on Phenrat et al.,⁸ and ρ_p is the density of the polymer.

$$E_{elas-NN} = 0 \qquad \qquad for \ D > L \qquad (S9)$$

$$E_{elas-NN} = \left(\frac{2\pi akT}{M_w} \Phi_p D^2 \rho_p\right) \left(\frac{D}{L} \ln\left(\frac{D}{L}\left(\frac{3-\frac{D}{L}}{2}\right)^2\right) - 6\ln\left(\frac{3-\frac{D}{L}}{2}\right) + 3\left(1+\frac{D}{L}\right)^2\right) \qquad for \ 0 < D \le L$$

where M_w is the molecular weight of the polymer (Table S1).

Similar to the nanoparticle-nanoparticle interaction, XDLVO theory can be applied to the nanoparticle-sand surface interaction calculation when Carbomer is present. In this case, the steric interaction energy ($E_{steric-NS}$) is calculated between a polymer-coated nTiO₂ and an uncoated sand grain^{9, 10} and summed with the E_{edl-NS} and E_{v-NS} values to obtain the total extended interaction energy.

$$E_{steric-NS} = \int_{D}^{L} 2\pi a \frac{kT}{s^{3}} \left(\frac{4L}{5} \left(\left(\frac{L}{D} \right)^{5/4} - 1 \right) + \frac{4L}{7} \left(\left(\frac{D}{L} \right)^{7/4} - 1 \right) \right) dD$$

$$for \ 0 < D \le L \quad (S10)$$

$$E_{steric-NS} = 0$$

$$for \ D > L$$

Where *s* is the separation distance between polymer chains on the nanoparticle surface, which was estimated to be 1.1 nm, based on the nanoparticle surface area (e.g., $3.1 \times 10^{-14} \text{ m}^2$ for a

nanoparticle with radius = 50 nm), polymer molecular weight (1500 g/mol), and polymer surface excess (2 mg/m², equivalent to ~25,000 polymer chains on a 50 nm radius particle).⁸

Table S1. Parameters used for XDLVO calculations between two TiO_2 nanoparticles and a TiO_2 nanoparticle and sand grain in the presence of Carbomer.

Variable	Definition	Value	Reference
L	Thickness of polymer layer	10 nm	Estimated from DLS data
X	Flory-Huggins solvency parameter	0.45	Phenrat et al. ⁸
Γ _{max}	Polymer surface excess	2 mg/m ²	Phenrat et al. ⁸
$ ho_p$	Density of polymer	1.4 g/cm ³	Information from manufacturer
M_w	Molecular weight of polymer	1500 g/mol	BF Goodrich ¹¹
S	Separation distance between polymer chains on nanoparticle surface	1.1 nm	Phenrat et al. ⁸

Transport modeling equations.

The three mechanisms that are generally thought to contribute to the single-collector contact efficiency (η_0) are Brownian diffusion (η_D), interception (η_I), and gravitational sedimentation (η_G). These mechanisms are summed to generate the single-collector contact efficiency.¹² Correlations for each value (η_D , η_I , and η_G) were developed by Tufenkji and Elimelech:¹³

$$\eta_0 = \eta_D + \eta_I + \eta_G \tag{S11}$$

$$\eta_D = 2.4A_S^{1/3}N_R^{-0.081}N_{Pe}^{-0.715}N_{vdW}^{0.052}$$
(S12)

$$\eta_I = 0.55 A_S N_R^{1.675} N_{RA}^{-0.125} \tag{S13}$$

$$\eta_G = 0.22 N_R^{-0.24} N_G^{1.11} N_{vdW}^{0.053}$$
(S14)

where

$$A_{S} = \frac{2(1-\gamma^{5})}{2-3\gamma+3\gamma^{5}-2\gamma^{6}}$$
(S15)

$$\gamma = (1 - n)^{1/3} \tag{S16}$$

$$N_R = \frac{d_p}{d_{50}} \tag{S17}$$

$$N_{Pe} = \frac{\nu_p d_{50}}{D_H} \tag{S18}$$

$$N_{vdW} = \frac{A_{NS}}{kT}$$
(S19)

$$N_{RA} = \frac{A_{NS}}{12\pi u a^2 n} \tag{S20}$$

$$N_{G} = \frac{2a^{2}(\rho_{p} - \rho_{w})g}{9 \mu v_{n}}$$
(S21)

In the above equations, N_R is the aspect ratio (particle diameter to sand grain diameter), N_{Pe} is the Peclet number (ratio of advective to dispersive transport), N_{vdW} characterizes the ratio of van der Waals attractive energy to thermal energy, N_{RA} is the influence of van der Waals forces and fluid velocity on particle deposition due to interception, and N_G represents the ratio of Stokes' particle settling velocity to the pore water velocity of the fluid.

References

- 1. J. Gregory, J. Colloid Interf. Sci., 1975, 51, 44-51.
- 2. G. Chen, X. Liu and C. Su, *Langmuir*, 2011, **27**, 5393-5402.
- 3. Y. Wang, Y. Li and K. D. Pennell, *Environ. Toxicol. Chem.*, 2008, 27, 1860-1867.
- 4. K. A. Dunphy Guzman, M. P. Finnegan and J. F. Banfield, *Environ. Sci. Technol.*, 2006, 40, 7688-7693.
- 5. S. Bhattacharjee and M. Elimelech, J. Colloid Interf. Sci., 1997, 193, 273-285.
- 6. A. Kaya and Y. Yukselen, *Canadian Geotechnical Journal*, 2005, **42**, 1280-1289.
- 7. G. Fritz, V. Schädler, N. Willenbacher and N. J. Wagner, *Langmuir*, 2002, **18**, 6381-6390.
- 8. T. Phenrat, N. Saleh, K. Sirk, H.-J. Kim, R. Tilton and G. Lowry, *J. Nanopart. Res.*, 2008, **10**, 795-814.
- 9. T. L. Byrd and J. Y. Walz, *Environ. Sci. Technol.*, 2005, **39**, 9574-9582.
- 10. A. R. Petosa, D. P. Jaisi, I. R. Quevedo, M. Elimelech and N. Tufenkji, *Environ. Sci. Technol.*, 2010, 44, 6532-6549.
- 11. B. Goodrich, *BF Goodrich Company Technical Literature: Carbopol Resin Handbook*, 1991.
- 12. K. M. Yao, M. M. Habibian and C. R. Omelia, *Environ. Sci. Technol.*, 1971, **5**, 1105-1112.
- 13. N. Tufenkji and M. Elimelech, *Environ. Sci. Technol.*, 2004, **38**, 529-536.

Figure S2. DLVO interaction profiles for two $nTiO_2$ particles without Carbomer stabilizing agent at (a) pH 5 and (b) pH 7.5. At pH 5 and ≥ 0.005 M NaCl, $nTiO_2$ suspensions became unstable, resulting in sedimentation of larger nanoparticle aggregates and unstable size and zeta potential readings.

Figure S3. DLVO interaction profiles for two $nTiO_2$ particles in the presence of 3 mg/L Carbomer at (a) pH 5 and (b) pH 7.5.

Figure S4. DLVO interaction profiles for $nTiO_2$ and a quartz surface (i.e., sand grain) without Carbomer at (a) pH 5 and (b) pH 7.5. At pH 5 and ≥ 0.005 M NaCl, $nTiO_2$ suspensions became unstable, resulting in sedimentation of larger nanoparticle aggregates and unstable size and zeta potential readings.

Figure S5. Comparison of experimentally measured and simulated (a) effluent breakthrough curves and (b) solid phase retention profiles with 3 mg/L Carbomer and 3 mM NaCl at pH 5.2 in Federal Fine (30-140 mesh) Ottawa sand (duplicate columns).

Figure S6. Comparison of experimentally measured and simulated (a) effluent breakthrough curves and (b) solid phase retention profiles with 3 mg/L Carbomer and 3 mM NaCl at pH 7.7 in Federal Fine (30-140 mesh) Ottawa sand (duplicate columns).