Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2016

Supporting Information for

Environmental processes and toxicity of metallic nanoparticles in aquatic system

as affected by natural organic matter

Zhenyu Wang,^{a,b} Lei Zhang,^a Jian Zhao,^{a,*} and Baoshan Xing^{c,*}

^a College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China

^b Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and

Technology, Qingdao 266071, China

^c Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA

Submitted to Environmental Science: Nano

*Corresponding authors

Tel.: +1 413 545 5212

E-mail address: bx@umass.edu (Dr. Baoshan Xing); zhaojian047@126.com (Dr. Jian Zhao)

	• • • • • •	<u>, , , , , , , , , , , , , , , , , , , </u>		
MNPs	Zero Point of Charge (ZPC)	Solubility at neutral pH (Percentage		
		of dissolved metal ions, MNPs		
		concentration, pH)		
CuO	7.4 (Paschoalino et al., 2008)	Soluble (0.7%, 20 mg/L, pH 7)		
		(Adeleye et al., 2014)		
ZnO	9.3 (Zhou et al., 2010)	Soluble (0.98%, 500 mg/L, pH 7.8)		
	9.0 (Kumar et al., 2010)	(Mudunkotuwa et al, 2011)		
Ag	<3 (Lin et al., 2015)	Soluble (0.94%, 2000 mg/L, pH 7.5)		
		(Fabrega et al., 2009)		
C	2.0 (Adeleye et al., 2014)	Soluble (1.1%, 20 mg/L, pH 7.0)		
Cu		(Adeleye et al., 2014)		
nZVI	7.0 (Lv et al., 2011)	Not available		
Fe ₃ O ₄	8.4 (Moharami and Jalali, 2014)	Not available		
Ea O	7.9 (Daou et al., 2007)	Not available		
Fe_2O_3	7.5 (Yu and Chow, 2004)			
Al ₂ O ₃	7.0 (Moharami and Jalali, 2014)	Soluble (0.25%, 100 mg/L)		
	7.9 (Ghosh et al., 2008)	(Wang et al., 2010)		
CeO ₂	~7.6 (Li et al., 2011)	Soluble (0.3%, 500 mg/L)		
		(Cornelis et al., 2011)		
SiO ₂	~2.2 (Liang et al., 2011)	Not available		
TiO ₂	5-6 (Thio et al., 2011)	Insoluble		
	6.2 (Loosli et al., 2013)	(Schmidt and Vogelsberger, 2009;		
	4.2 (Mudunkotuwa and Grassian, 2010)	Wang et al., 2010)		

Table S1. ZPCs and solubility (at neutral pH) of typical MNPs in water.

Reference in Table S1:

M. Paschoalino, N. C. Guedes, W. Jardim, E. Mielczarski, J. A. Mielczarski, P. Bowen and J. Kiwi, Inactivation of E. coli mediated by high surface area CuO accelerated by light irradiation> 360nm. *J. Photoch. Photobio. A: Chem.*, 2008, 199, 105-111.

A. S. Adeleye, J. R. Conway, T. Perez, P. Rutten and A. A. Keller, Influence of extracellular polymeric substances on the long-term fate, dissolution, and speciation of copper-based nanoparticles. *Environ. Sci. Technol.*, 2014, 48, 12561-12568.

D. Zhou and A. A. Keller, Role of morphology in the aggregation kinetics of ZnO nanoparticles. *Water Res.*, 2010, 44, 2948-2956.

S. A. Kumar, H. W. Cheng, S. M. Chen and S. F. Wang, Preparation and characterization of copper nanoparticles/zinc oxide composite modified electrode and its application to glucose sensing. *Mater. Sci. Eng. C*, 2010, 30, 86-91.

I. A. Mudunkotuwa, T. Rupasinghe, C. M. Wu and V. H. Grassian, Dissolution of ZnO nanoparticles at circumneutral pH: a study of size effects in the presence and absence of citric acid. *Langmuir*, 2011, 28, 396-403.

J. Fabrega, S. R. Fawcett, J. C. Renshaw and J. R. Lead, Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environ. Sci. Technol., 2009, 43, 7285-7290.

X. Lv, J. Xu, G. Jiang and X. Xu, Removal of chromium (VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes. *Chemosphere*, 2011, 85, 1204-1209.

S. Moharami and M. Jalali, Effect of TiO₂, Al₂O₃, and Fe₃O₄ nanoparticles on phosphorus removal from aqueous

solution. Environ. Prog. Sustain. Energy, 2014, 33, 1209-1219.

T. J. Daou, S. Begin-Colin, J. M. Greneche, F. Thomas, A. Derory, P. Bernhart, P. Legare and G. Pourroy, Phosphate adsorption properties of magnetite-based nanoparticles, *Chem. Mater.*, 2007, 19, 4494–4505.

S. Yu and G. M. Chow, Carboxyl group (-CO₂H) functionalized ferrimagnetic iron oxide nanoparticles for potential bio-applications. *J. Mater. Chem.*, 2004, 14, 2781-2786.

S. Ghosh, H. Mashayekhi, B. Pan, P. Bhowmik and B. Xing, Colloidal behavior of aluminum oxide nanoparticles as affected by pH and natural organic matter. *Langmuir*, 2008, 24, 12385-12391.

Z. Wang, K. Zhang, J. Zhao, X. Liu and B. Xing, Adsorption and inhibition of butyrylcholinesterase by different engineered nanoparticles. *Chemosphere*, 2010, 79, 86–92.

B. J. R. Thio, D. Zhou, A. A. Keller, Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles. *J. Hazard. Mater.*, 2011, 189, 556-563.

F. Loosli, P. Le Coustumer, S. Stoll, TiO2 nanoparticles aggregation and disaggregation in presence of alginate and Suwannee River humic acids. pH and concentration effects on nanoparticle stability. *Water Res.*, 2013, 47, 6052-6063.

I. A. Mudunkotuwa and V. H. Grassian, Citric acid adsorption on TiO_2 nanoparticles in aqueous suspensions at acidic and circumneutral pH: surface coverage, surface speciation, and its impact on nanoparticle– nanoparticle interactions. J. Am. Chem. Soc., 2010, 132, 14986-14994.

J. Schmidt and W. Vogelsberger. Aqueous long-term solubility of titania nanoparticles and titanium (IV) hydrolysis in a sodium chloride system studied by adsorptive stripping voltammetry. *J. solution chem.*, 2009, 38, 1267-1282.

K. Li, W. Zhang, Y. Huang and Y. Chen, Aggregation kinetics of CeO₂ nanoparticles in KCl and CaCl₂ solutions: measurements and modeling. *J. Nano. Res.*, 2011, 13, 6483-6491.

G. Cornelis, B. Ryan, M. J. McLaughlin, J. K. Kirby, D. Beak and D. Chittleborough, Solubility and batch retention of CeO₂ nanoparticles in soils. *Environ. sci. technol.*, 2011, 45, 2777-2782.

L. Liang, J. Lv, L. Luo, J. Zhang and S. Zhang, Influences of surface-coated fulvic and humic acids on the adsorption of metal cations to SiO₂ nanoparticles. *Colloid Surf. A: Physicochem. Eng. Asp.*, 2011, 389, 27-32.

Species	Possible structure	Solubility	Charge	Molecular
		(water)	(4 <ph<10)< td=""><td>Weight (kDa)</td></ph<10)<>	Weight (kDa)
Humic		Well	Negative	1-10
Acid		soluble at	(Yang et al.,	(Thurman et
		high pH	2009)	al., 1982)
	$ \begin{pmatrix} \varphi \\ \varphi$			
Fulvic	он соон сн₂он	Well	Negative	0.5-2
Acid	HOOC HOOC HOOC HOOC HOOC HOOC HOOC HOOC	soluble	(Piccolo et al., 2001)	(Thurman et al., 1982)
Tannic	он	Well	Negative	1.70
Acid		soluble		
citric	О	Well	Negative	0.192
acid	но он он	soluble		

Table S2. Properties of representative NOM.

References in Table S2:

F. J. Stevenson, Extraction, fractionation, and general chemical composition of soil organic matter, *Humus chemistry*. *Genesis, composition, reactions*, 1982, 26-54.

K. Yang, D. Lin and B. Xing, Interactions of humic acid with nanosized inorganic oxides. *Langmuir*, 2009, 25, 3571-3576.

E. M. Thurman, R. L. Wershaw, R. L. Malcolm and D. J. Pinckney, Molecular size of aquatic humic substances. *Org. Geochem.*, 1982, 4, 27-35.

A. Piccolo, The supramolecular structure of humic substances. Soil sci., 2001, 166, 810-832.

A. Philippe and G. E. Schaumann, Interactions of dissolved organic matter with natural and engineered inorganic colloids: a review. *Environ. Sci. Technol.*, 2014, 48, 8946-8962.

MNPs	NOM	Adsorption isotherm	Adsorption mechanisms	References
TiO ₂	Six HA	The isotherms followed	High adsorption is related to	Erhayem and
	from	Freundlich model. Langmuir	high aromaticity and functional	Sohn, 2014
	different	model was not appropriate	group (carboxylic and phenolic	
	sources	here because HA is known to	groups) content of HA.	
		consist of a complex mixture.		
TiO ₂ ,	HA	Langmuir type adsorption	HA adsorption on MNPs was	Yang et al.,
SiO ₂ ,		behavior was observed for all	pH-dependent. HA adsorption	2009
Al ₂ O ₃		the MNPs.	by MNPs was mainly induced	
, ZnO			by electrostatic attraction and	
			ligand exchange between HA	
			and MNPs surface. Adsorption	
			is negatively related to MNPs	
			hydrophilicity as indicated by H	
			contents on MNPs surface (i.e.,	
			surface-bound water and	
			hydroxyl groups).	
SiO ₂	HA, FA	The adsorption of HA and FA	HA sorption is higher than FA:	Liang et al.,
(20,		were fitted much better to	(1) HA is more hydrophobic; (2)	2011
100,		Langmuir model than	HA was facilitated to be	
500		Freundlich model.	adsorbed through cation	
nm)			bridging when cations were	
			presented. (3) Hydrogen	
			bonding is present. HA and FA	
			may act as the hydrogen-bond	
			donors.	
TiO ₂	Citric	-	Adsorption of citric acid at all	Mudunkotuwa
	acid		the tested pHs was irreversible	and Grassian,
			because of strong inner-sphere	2010
			surface complexation.	
Ag	SRHA	Adsorption of HA on Ag	The authors did not deeply	Gao et al., 2012
		MNPs followed a Langmuir	investigate the interaction	
		model at neutral pH.	mechanism.	

Table S3. Adsorption of NOM on different types of MNPs.

References in Table S3:

M. Erhayem and M. Sohn, Effect of humic acid source on humic acid adsorption onto titanium dioxide nanoparticles. *Sci. Total Environ.*, 2014, 470, 92-98.

K. Yang, D. Lin and B. Xing, Interactions of humic acid with nanosized inorganic oxides. *Langmuir*, 2009, 25, 3571-3576.

L. Liang, L. Luo and S. Zhang, Adsorption and desorption of humic and fulvic acids on SiO₂ particles at nanoand micro-scales. *Colloid Surf. A: Physicochem. Eng. Asp.*, 2011, 384, 126-130.

I. A. Mudunkotuwa and V. H. Grassian, Citric acid adsorption on TiO₂ nanoparticles in aqueous suspensions at

acidic and circumneutral pH: surface coverage, surface speciation, and its impact on nanoparticle-nanoparticle interactions. J. Am. Chem. Soc., 2010, 132, 14986-14994.

J. Gao, K. Powers, Y. Wang, H. Zhou, S. M. Robertse, B. M. Moudgila, B. Koopmanb and D. S. Barbere. Influence of Suwannee River humic acid on particle properties and toxicity of silver nanoparticles. *Chemosphere*, 2012, 89, 96-101.

MNPs	NOM	Dissolution alteration	Dissolution mechanisms	References
Ag	HA	HA suppressed the dissolution of Ag	The mechanism was not	Linlin and
		MNPs, and the dissolution was	investigated, but two reasons	Tanaka, 2014
		decreased with increasing NOM	were speculated: (1) the	
		concentrations.	reducing sites on Ag surface	
			were blocked by HA; (2) the	
			released Ag can be reduced to	
			Ag MNPs via the reducing sites	
			of HA molecules.	
Ag	SRFA	SRFA slowed down the dissolution of	-	Baalousha et
		Ag NPs, probably due to the protective		al., 2015
		role of SRFA in reducing Ag NP		
		dissolution.		
Ag	HA, FA	SRFA and SRHA had little effect on	The Ag-NOM interaction	Gunsolus et
		Ag dissolution while PLFA	excluded molecular oxygen	al., 2015
		significantly decreased the release of	from active sites and thereby	
		Ag ⁺ .	limited oxidative dissolution.	
Cu	HA, FA,	All the NOM could enhance the	Copper release mainly resulted	Wang et al.,
	BSA,	dissolution of Cu MNPs, and HA had	from complexation reactions	2015
	sodium	the highest enhancement because of a	between Cu MNPs and	
	alginate	higher amount of functional groups	functional groups of NOM.	
		and lower molecular weight of HA,		
		which facilitated the contact and		
		complexion reactions.		
CuO, Cu	Extracellu	The presence of EPS correlated with	The enhancement may be	Adeleye et
	lar	higher dissolved Cu at pH 7 and 11,	attributed to improved stability,	al., 2014
	Polymeric	and lower dissolved Cu at pH 4.	solubility of NOM-Cu	
	Substance	More dissolution was observed at	complexes, and the strength of	
	s (EPS)	higher I.S. (NaCl) due to complexation	interactions between NOM and	
		with Cl [–] .	Cu-based MNPs.	
			Decreased Cu ²⁺ dissolution in	
			the presence of EPS may be	
			caused by (1) steric exclusion of	
			water from the surface of the	
			particles by NOM aggregates,	
			(2) reduced availability of H ⁺	
			which may bind to NOM	

Table S4. Dissolution of MNPs in the presence of NOM.

			molecules, and/or (3) adsorption	
			of dissolved Cu by NOM	
			aggregates.	
Cu, CuO	NOM	The presence of NOM decreased the	This reduction should be caused	Conway et
		concentration of Cu _{aq} and Cu _{dis} .	by a combination of chelation	al., 2015
			and surface coating.	
ZnO	HA	The addition of HA into ZnO MNPs	The increased dissolution of Zn	Bian et al.,
		increased the dissolution only at high	MNPs is due to polydentate	2011
		pH conditions (e.g., pH 9.0).	complexing of HA and the	
		The dissolution is size-dependent.	availability of a greater number	
			of functional groups at high pHs	
			(e.g., pH 9.0).	
ZnO	Citric acid	The presence of citric acid	The enhancement was attributed	Mudunkotuw
		significantly enhanced the dissolution	to ligand-promoted dissolution.	a et al., 2011
		of ZnO MNPs.		

References in Table S4:

Z. Linlin and K. Tanaka, Dissolution of silver nanoparticles in presence of natural organic matter. *Adv. Mater. Lett.*, 2014, 5, 6-8.

M. Baalousha, K. P. Arkill, I. Romer, R. E. Palmer and J. R. Lead, Transformations of citrate and Tween coated silver nanoparticles reacted with Na₂S. *Sci. Total Environ.*, 2015, 502, 344-353.

I. L. Gunsolus, M. P. Mousavi, K. Hussein, P. Buhlmann and C. L. Haynes, Effects of Humic and Fulvic Acids on Silver Nanoparticle Stability, Dissolution, and Toxicity, *Environ. Sci. Technol.*, 2015, In press.

L. F. Wang, N. Habibul, D. Q. He, W. W. Li, X. Zhang, H. Jiang and H. Q. Yu, Copper release from copper nanoparticles in the presence of natural organic matter. *Water Res.*, 2015, 68, 12-23.

A. S. Adeleye, J. R. Conway, T. Perez, P. Rutten and A. A. Keller, Influence of extracellular polymeric substances on the long-term fate, dissolution, and speciation of copper-based nanoparticles. *Environ. Sci. Technol.*, 2014, 48, 12561-12568.

J. R. Conway, A. S. Adeleye, J. Gardea-Torresdey and A. A. Keller, Aggregation, Dissolution, and Transformation of Copper Nanoparticles in Natural Waters. *Environ. Sci. Technol.*, 2015, 49, 2749-2756.

S. W. Bian, I. A. Mudunkotuwa, T. Rupasinghe and V. H. Grassian, Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid. *Langmuir*, 2011, 27, 6059-6068.

I. A. Mudunkotuwa, T. Rupasinghe, C. M. Wu and V. H. Grassian, Dissolution of ZnO nanoparticles at circumneutral pH: a study of size effects in the presence and absence of citric acid. *Langmuir*, 2011, 28, 396-403.