Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2015

## Supplemental information

Initial estimates for the film mass transport coefficient  $(k_f)$  were based on the Gnielinski correlation <sup>23</sup>:

$$k_f = \frac{\left[1 + 1.5(1 - \varepsilon)\right] \times D_l}{d_p} \times \left(2 + 0.644 \times \operatorname{Re}^{1/2} \times \operatorname{Sc}^{1/3}\right)$$
(Equation S.1)

$$\operatorname{Re} = \frac{\rho_l \times \Phi \times d_p \times v_l}{\varepsilon \times \mu_l}$$
(Equation S.2)

$$Sc = \frac{\mu_l}{\rho_l \times D_l}$$
(Equation S.3)

Constraints: Re×Sc > 500;  $0.6 \le Sc \le 10^4$ ;  $1 \le Re < 100$ ;  $0.26 < \varepsilon < 0.935$ 

where  $k_f \equiv$  the film mass transport coefficient (calculated  $k_f \approx 4.36 \ge 10^{-3} \le 10^{-3} \le$ 

Considering that the material was very porous (the particle porosity  $\varepsilon_P \approx 0.75$ ), the impact of surface diffusion was assumed to be negligible. As suggested by Sontheimer et al. <sup>38</sup>, the pore diffusion coefficient was estimated using Equation S.4:

$$D_P = \frac{\varepsilon_P \times D_l}{\tau}$$
(Equation S.4)

The tortuosity was estimated using the correlation suggested by Mackie and Meares (Equation S.5) for electrolyte solutions <sup>40</sup>:

$$\tau = \frac{(2 - \varepsilon_P)^2}{\varepsilon_P}$$
 (Equation S.5)

where  $\tau$  is the torusity factor and  $\varepsilon_P$  is the particle porosity ( $\varepsilon_P \approx 0.75$ ). The estimated tortuosity value was  $\tau \approx 2.1$ . The estimated value for the pore diffusion coefficients were  $D_{P-As} \approx 3.5 \times 10^{-6} \text{ cm}^2 \text{ s}^{-1}$  for arsenate and  $D_{P-NO3} \approx 6.85 \times 10^{-6} \text{ cm}^2 \text{ s}^{-1}$ .

The model breakthrough predictions were compared with the experimental data. Correlations between the model predictions and experimental data characterized by  $R^2 > 0.9$  were considered to be sufficient for hypothesis validation.



**Figure S1.** X-ray diffraction peaks indicate existence of anatase crystalline structure of the synthesized titanium dioxide nanoparticles within t e hybrid ion-exchange media.



**Figure S2**. Arsenic sorption isotherms for the Ti-HIX media in 5 mM NaHCHO<sub>3</sub> buffered ultrapure water at final pH =  $7.2 \pm 0.3$  and contact time of 3 days ;(C<sub>0</sub>  $\approx 108 \ \mu g \ L^{-1} \ As)$ 



**Figure S3**. Nitrate sorption isotherms for the Ti-HIX media in 5 mM NaHCHO<sub>3</sub> buffered ultrapure water at final pH =  $7.2 \pm 0.3$  and contact time of 3 days; (C<sub>0</sub>  $\approx 1.1$  mg L<sup>-1</sup> N-NO<sub>3</sub><sup>-</sup>).



**Figure S4.** Sulfate breakthrough curves for titanium dioxide nanomaterial-enhanced hybrid ion exchange media under continuous flow regime.