Modeling approaches to predict removal of trace organic compounds by ozone oxidation in potable reuse applications

Minkyu Park^a, Tarun Anumol^{a,b}, and Shane A. Snyder^{a,c*}

- a. Department of Chemical & Environmental Engineering, University of Arizona, 1133 E James E Rogers Way, Harshbarger 108, Tucson, AZ 85721-0011, USA
- b. Agilent Technologies Inc., 2850 Centerville Road, Wilmington, DE 19808, USA
- c. National University of Singapore, NUS Environmental Research Institute (NERI), 5A Engineering Drive 1; T-Lab Building, #02-01; Singapore 117411

Supplementary information

^{*} Corresponding author: snyders2@email.arizona.edu

1. Latin hypercube-One-factor-At-a-Time (LH-OAT) method

LH-OAT method is a sensitivity analysis successively applying LH sampling and OAT sampling^{1, 2}. As a procedure of LH sampling, *N* sample points for *N* intervals were taken. Then, each of the *N* points is changed *P* times by changing each of the *P* paramters one at a time as OAT sampling. Partial effect $S_{i,j}$ for each paramter e_i can be calculated using the following equation:

$$S_{i,j} = \frac{\left| 100 * \left(\frac{M(e_1, ..., e_i * (1 + f_i), ..., e_p) - M(e_1, ..., e_i, ..., e_p)}{\left[M(e_1, ..., e_i * (1 + f_i), ..., e_p) + M(e_1, ..., e_i, ..., e_p) / 2 \right]} \right|}{f_i} \right|$$

where $M(\cdot)$ is the model function, f_i is the fraction by which the parameter e_i is changed and j refers to an LH point. The final effect S was determined by averaging the partial effects $(S_{i,j})$ after 1000 loops for all the LH points.

2. Tables

Four-parameter MLR model				
	Estimate	SE	t statistics	<i>p</i> -value
Intercept	-32.77	9.715	-3.373	0.001120
O_3	10.22	0.6813	15.00	7.490×10 ⁻²⁴
TOC	1.130	1.185	0.9532	0.3437
$k_{\rm O3}$	6.912×10 ⁻⁵	6.166×10 ⁻⁶	11.21	1.900×10 ⁻¹⁷
$k_{\text{•OH}}$	6.023×10 ⁻⁹	9.450×10 ⁻¹⁰	6.373	1.546×10 ⁻⁸
Three-parameter MLR model				
	Estimate	SE	t statistics	<i>p</i> -value
Intercept	-25.92	6.541	-3.963	1.7042×10 ⁻⁴
O_3	10.27	0.6787	15.13	3.288×10-24
$k_{\rm O3}$	6.900×10 ⁻⁹	6.161×10 ⁻⁶	11.20	1.639×10 ⁻¹⁷
$k_{\bullet \mathrm{OH}}$	6.052×10 ⁻⁹	9.439×10 ⁻¹⁰	6.412	1.546×10 ⁻⁸

Table S1 Modeling result of four- and three parameter MLR models.

3. Figures

Fig. S1. A normal probability plot of the residuals from the four-parameter MLR model.

References

- 1. A. van Griensven, T. Meixner, S. Grunwald, T. Bishop, M. Diluzio and R. Srinivasan, *Journal of Hydrology*, 2006, **324**, 10-23.
- 2. K. H. Cho, S. Sthiannopkao, Y. A. Pachepsky, K.-W. Kim and J. H. Kim, *Water Research*, 2011, **45**, 5535-5544.