Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2015

Supporting Information for "Macromolecule based platforms for developing tailor made formulations for scale inhibition"

Amir Sheikhi,^{a,b,c,†} Na Li,^{a,c,†} Theo G. M. van de Ven^{*,a,b,c} and Ashok Kakkar^{*,a,c}

The supporting information (SI) includes three tables (S1-S3).

^{a.} Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada. E-mail: ashok.kakkar@mcgill.ca; Fax: +514-398-3797; Tel: +514-398-6912

^{b.} Pulp and Paper Research Centre, Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada. E-mail: theo.vandeven@mcgill.ca

^c Centre for Self-Assembled Chemical Structures, McGill University, Montreal, Quebec H3A 0B8, Canada.

⁺ These authors contributed equally to this work.

Crystal composition	Crystal name	Properties	Ref.
Calcium carbonate (CaCO ₃ .xH ₂ O)	Calcite (x = 0)	 The most stable form Trigonal-rhombohedral Favored at T < 30 °C K_{sp} = 3.3×10⁻⁹ at 25 °C 	1-4
	Aragonite (x = 0)	 Second most stable form Orthorhombic Favored at T > 70 °C K_{sp} = 4.6×10⁻⁹ at 25 °C 	1,3-5
	Vaterite (x = 0)	 Third most stable form Hexagonal K_{sp} = 1.2×10⁻⁸ at 25 °C 	1,3,4,6
	Amorphous calcium carbonate (ACC)	 The transient and most unstable form seen prior to crystallization Disordered 	7

Table S1. Common scales and their properties.

	Calcium carbonate monohydrate (x = 1)	Metastable phaseHexagonal	8
	Calcium carbonate hexahydrate (Ikaite, x = 6)	 Metastable Hydrogen bond mediated growth (e.g., pyramidal shape) Forms at low temperatures, such as cold saline sea water 	9
Calcium sulphate (CaSO4.xH2O)	Gypsum (x = 2)	 The most abundant sulphate mineral The stable phase below 42 °C and at relative humidity above the gypsum–anhydrite equilibrium curve Monoclinic 	10
	Bassanite (calcium sulphate hemihydrate, known as plaster of Paris, x = 0.5)	 The result of gypsum dehydration Below 97 °C, the hemihydrate is metastable with regards to gypsum Microscopic needles 	
	Calcium sulphate anhydrite (x = 0)	 Stable at T > 42 °C Orthorhombic, dipyramidal 	
Aluminosilicates (Al ₂ O ₃ .SiO ₂)	Andalusite	Coarsest grain sizeOrthorhombic	11,12
	Kyanite	 The most abundant polymorph Triclinic 	
	Sillimanite	Orthorhombic	

Crystallizing compound	Polymer additive	Mechanism/morphology	Ref.
Hydrocortisone acetate	 Hydroxypropyl methylcellulose (HPMC) Methylcellulose (MC) Polyvinyl pyrrolidone (PVP) Polyethylene glycol (PEG, M_w = 400) 	 Delayed nucleation time by polymer- crystal hydrogen bonding Growth inhibition by polymer adsorption on crystal surface 	13
Bicalutamide model drug	Polyvinylpyrrolidone (PVP)	 Crystal growth retardation No effect on the nucleation rate 	14
Various drugs with low solubility	Various polymeric precipitation inhibitors	 Bulk solution property modification, e.g., surface tension Hydrodynamic layer alteration Adsorption on crystal surface to inhibit growth by blocking solute molecules and distorting crystal structure, and flattening rough surfaces Changing the crystal surface energy 	15
Felodipine	Hydroxypropylmethyl cellulose (HPMC)	Nucleation inhibition (by a factor of 1000) and growth inhibition (by a factor of 2)	16
	Hydroxypropyl methylcellulose acetate succinate (HPMCAS)	Crystal growth inhibition when the polymer is stretched (pH = 6.8) as opposed to lower efficiency resulted from a coiled conformation (pH = 3)	17

 Table S2. Examples of crystal modifier macromolecules and the corresponding mechanisms.

Hydrocortisone	Hydroxypropyl methylcellulose (HPMC)	Precipitation into a metastable crystal polymorph	18
CaCO3	Polystyrene sulfonate (PSS)	 PSS-Ca globules help form metastable amorphous calcium carbonate (ACC). PSS improves nucleation, resulting in mesoscale assembly: larger number of crystals with smaller size, rougher and more amorphous crystals 	19,20
Inorganic crystals, such as CaCO ₃	Double-hydrophilic block copolymers (comprising a nonionic block and an ionic block)	Various morphologies, such as disks, dumbbells, flowers, etc.	21,22
ZnO	Polyacrylamide	 Ringlike morphology due to the interaction between polymer amide groups with Zn²⁺ Lowered surface energy Directional growth inhibition 	23

Polymers	Structure	Conditions	Calcium salt	Inhibition efficiency	Ref.
PASP	(1)	$M_w = 3-10 \text{ kDa},$ pH = 3.5-10.0	CaCO3	In polymer concentration 0.001- 0.01 M, calcite dissolution proceeded.	24
		80 °C, 10 h,	CaCO3 Ca3(PO4)2	4 mg/L, 100% inhibition; 22mg/L, 100% inhibition.	25
		40 °C, 25 h	CaSO ₄	10 ppm, 100% inhibition	26
Polyether-based PAA	$- \begin{bmatrix} -CH_2 - CH \end{bmatrix}_{X} \begin{bmatrix} CH_2 - CH \end{bmatrix}_{y} \\ COCH \\ CH_2 \\ - \begin{pmatrix} -CH_2CH_2O \end{pmatrix}_{10} CH_2 - CH_2OONa \end{bmatrix}$	80 °C, 6 h	CaSO ₄	3 mg/L 82% inhibition	27
	$- \left(\begin{array}{c} -CH_2 - CH_1 \\ -CH_2 - CH_2 \\ -CH_2 \\ -CH_$	$M_{\rm w} = 1.84 \text{ x } 10^4 \text{ Da}, 70 \text{ °C}$	CaSO ₄	3 mg/L, 98% inhibition	28

 Table S3. Calcium scale inhibition efficiency of macromolecules.

$- \begin{array}{c} - \begin{array}{c} - \begin{array}{c} - \begin{array}{c} - \begin{array}{c} - \end{array} \\ - \end{array} \\ - \begin{array}{c} - \end{array} \\ - \end{array} \\ - \begin{array}{c} - \end{array} \\ - \begin{array}{c} - \end{array} \\ - \begin{array}{c} - \end{array} \\ - \end{array} \\ - \begin{array}{c} - \end{array} \\ - \end{array} \\ - \begin{array}{c} - \end{array} \\ - \begin{array}{c} - \end{array} \\ - \end{array} \\ - \end{array} \\ - \begin{array}{c} - \end{array} \\ - \end{array} \\ - \end{array} \\ - \end{array} \\ - \begin{array}{c} - \end{array} \\ - \end{array} \\ - \end{array} \\ - \begin{array}{c} - \end{array} \\ - \end{array} \\ - \end{array} \\ - \begin{array}{c} - \end{array} \\ - \begin{array}{c} - \end{array} \\ - \bigg \\ = \bigg \\ - \bigg \\ = \bigg \\ - \bigg \\ = \bigg \\ $	60 °C, 10 h	CaCO3	8 mg/L, 98% inhibition	29
(2)	80 °C, 10 h	CaCO ₃	12 mg/L, 89% inhibition	30
		CaSO ₄	3mg/L, 98.8% inhibition	
—(-сн—сн),(-сн—сн),	$M_w = 10 \text{ kDa}$	CaCO ₃	20-25 ppm, 100% inhibition	31
	90 °C, 24 h, pH = 7-8.5			
	80 °C, pH = 9.0	Ca ₃ (PO ₄) ₂	6 mg/L, 90% inhibition	32
$- \begin{bmatrix} -CH - CH \end{bmatrix}_{X} + CH_{2} - CH \end{bmatrix}_{y}$ $COOHCOOH \qquad CH_{2}$ $- \begin{bmatrix} -CH_{2}CH_{2}O \\ -CH_{2}CH_{2}O \end{bmatrix}_{10} CH_{2} - CH_{2}OONa$	80 °C, pH = 9.0	Ca3(PO4)2	6 mg/L, 99% inhibition	32
(3)	60 °C, 10 h	CaCO ₃	8 mg/L, 90.16% inhibition	33
		CaSO ₄	4 mg/L, 96.94% inhibition	
	80 °C, pH = 6.7	CaCO3	4-10 ppm, lattice parameter changed and the induction time increased.	34
-	(2) (2) (2) $(-CH_{2}CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}COOH$ (2) $(-CH_{2}CH_{2}O-f_{10}-CH-f_{1}-CH-f_{1}-f_{1$	(2) (2) (2) (2) (2) (2) (2) (2) (3)	$\begin{array}{c c} + cH_{2} - cH_{1} + cH_{-} - cH_{2} + z \\ cH_{2} - cOOH \\ cH_{2} - cOOH \\ cH_{2} - cH_{2} + cOOH \\ cH_{2} - cH_{2} + cH_{2} - cH_{2} + cH_{2} + cOOH \\ \end{array}$ $\begin{array}{c c} (2) & 80 ^{\circ}C, 10 h \\ caCO_{3} \\ caSO_{4} \\ \hline \\ coOH - cOH + cH_{3} - cOH + fn \\ cOOH - cOH + cH_{3} - cOOH \\ \hline \\ cOOH - cOH + cH_{3} - cOH + fn \\ \hline \\ coOH - cOH + cH_{2} - cH_{2} \\ \hline \\ coOH - cOH + cH_{2} - cH_{2} \\ \hline \\ cOH - cOH + cH_{2} - cH_{2} \\ \hline \\ cOH - cOH + cH_{2} \\ \hline \\ cOH - cOH + cH_{2} \\ \hline \\ cOH - cH_{2} - cH_{2} \\ \hline \\ cOH - cH_{2} - cH_{2} \\ \hline \\ cOH - cH_{2} \\ \hline \\ cH_{2} \\ \hline \\ cOH - cH_{2} \\ \hline \\ cH_{2} \\ \hline \\ cOH - cH_{2} \\ \hline \\ cH_{2} \\ \hline \\ cOH \\ \hline \\ cH_{2} \\ \hline \\ cOH \\ \hline \\ cH_{2} \\ \hline \\ cOH \\ \hline \\ cH_{2} \\ cH_{2} \\ \hline \\ cH_{2} \\ cH_{2} \\ \hline \\ cH_{2} \\ c$	$(2) \qquad \qquad$

IA/SAS/SHP	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	40 °C, pH = 7.3	CaCO3	0.5 mg/L, 100% inhibition	35
MA-SS		80 °C, 10 h	CaCO ₃	16 ppm, 98.2%	36,37
	$\begin{array}{c c} HO \longrightarrow P + CH_2 \longrightarrow CH \longrightarrow CH \longrightarrow CH \longrightarrow HI \\ OH & OH & COOH COOH \\ SO_3Na & OH \\ SO_3N$		CaSO ₄	94% inhibition	38
PAA-PAMPS	(4)	$M_w = 10 \text{ kDa}, 90 \text{ min}$	CaCO ₃	4.5 mM, 100% inhibition	39
Polyzwitterion acid (PZA)	$(H_2O_3)^{(CH_2)_3}$	$M_{\rm w}$ = 40 kDa , 40 °C	CaSO4	20 ppm, 100% inhibition	40
	$(H_2C)_3 \qquad \qquad$	40 °C, 800 min	CaSO4	20 ppm, 98% inhibition	41

Acrylonitrile copolymers	$ \begin{array}{c} -\left(CH_2-CH\right)_n\left(CH_2-CH\right)_n\\ \\CN\\ \\ \\ COCH\\ \\ \\ \\ COCH\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	60 °C, pH = 7.0-8.5	CaSO4,	5 ppm, 100% inhibition	42
	$-\left(-CH_2-CH\right)_n\left(-CH_2-CH_2-CH_2-CH_2-CH_2-CH_2-CH_2-CH_2$	80 °C, pH = 8.0	CaCO3	10 ppm , 99% inhibition	
Pectin-based copolymers	(5)	55 °C, pH = 9.0	CaSO ₄	97% inhibition, and 25 days induction time.	43
Polyglycerol	(6)		CaCO ₃	Crystal structural transition was observed.	44
PAMAM dendrimers	(7)	80 °C, 10 h,	CaCO ₃	14 mg/L, 100% inhibition	45

References

- 1 T. Ogino, T. Suzuki and K. Sawada, *Geochim. Cosmochim. Acta*, 1987, **51**, 2757–2767.
- 2 J. R. Smyth and T. J. Ahrens, *Geophys. Res. Lett.*, 1997, 24, 1595.
- 3 G. Wolf, E. Königsberger, H. G. Schmidt, L. Königsberger and H. Gamsjäger, J. *Therm. Anal.*, 2000, **60**, 463–472.
- 4 A. A. Al-Hamzah, C. P. East, W. O. S. Doherty and C. M. Fellows, *Desalination*, 2014, **338**, 93–105.
- 5 P. Character, N. Jan and W. L. Bragg, *Proc. R. Soc. London . Ser. A*, 1924, **105**, 16–39.
- 6 S. R. Kamhi, Acta Crystallogr., 1963, 16, 770–772.
- 7 L. Addadi, S. Raz and S. Weiner, Adv. Mater., 2003, 15, 959–970.
- 8 D. Kralj and L. Brečević, *Colloids Surfaces A Physicochem. Eng. Asp.*, 1995, **96**, 287–293.
- 9 A. R. Lennie, C. C. Tang and S. P. Thompson, *Mineral. Mag.*, 2004, 68, 135–146.
- 10 A. E. Charola, J. Pühringer and M. Steiger, *Environ. Geol.*, 2007, **52**, 207–220.
- 11 D. L. Whitney, Am. Mineral., 2002, 87, 405–416.
- 12 B. Douglas and S.-M. Ho, *Structure and Chemistry of Crystalline Solids*, Springer-Verlag New York, 2006.
- 13 S. L. Raghavan, a. Trividic, a. F. Davis and J. Hadgraft, *Int. J. Pharm.*, 2001, **212**, 213–221.
- L. Lindfors, S. Forssén, J. Westergren and U. Olsson, J. Colloid Interface Sci., 2008, 325, 404–413.
- 15 D. B. Warren, H. Benameur, C. J. H. Porter and C. W. Pouton, *J. Drug Target.*, 2010, **18**, 704–731.
- 16 D. E. Alonzo, S. Raina, D. Zhou, Y. Gao, G. G. Z. Zhang and L. S. Taylor, *Cryst. Growth Des.*, 2012, **12**, 1538–1547.
- 17 C. J. Schram, S. P. Beaudoin and L. S. Taylor, *Langmuir*, 2015, **31**, 171–179.

- 18 X. Yang, B. Shen and Y. Huang, *Cryst. Growth Des.*, 2015, **15**, 546–551.
- 19 T. Wang, H. Co and M. Antonietti, 2005, 3246–3247.
- 20 P. J. M. Smeets, K. R. Cho, R. G. E. Kempen, N. a. J. M. Sommerdijk and J. J. De Yoreo, *Nat. Mater.*, 2015, **14**, 394–399.
- 21 H. Colfen, *Macromol. Rapid Commun.*, 2001, **22**, 219–252.
- 22 A. N. Kulak, P. Iddon, Y. Li, S. P. Armes, H. Cölfen, O. Paris, R. M. Wilson and F. C. Meldrum, J. Am. Chem. Soc., 2007, 129, 3729–3736.
- 23 Y. Peng, A. W. Xu, B. Deng, M. Antonietti and H. Cölfen, *J. Phys. Chem. B*, 2006, **110**, 2988–2993.
- 24 K. Burns, Y. T. Wu and C. S. Grant, *Langmuir*, 2003, **19**, 5669–5679.
- 25 J. Chen, L. Xu, J. Han, M. Su and Q. Wu, *Desalination*, 2015, **358**, 42–48.
- 26 S. A. Ali, I. W. Kazi and F. Rahman, *Desalination*, 2015, 357, 36–44.
- C. Fu, Y. Zhou, G. Liu, J. Huang, W. Sun and W. Wu, *Ind. Eng. Chem. Res.*, 2011, 50, 10393–10399.
- 28 K. Cao, Y. Zhou, G. Liu, H. Wang and W. Sun, J. Appl. Polym. Sci., 2014, 131, 40193(1)–40193(9).
- 29 G. Liu, M. Xue, J. Huang, H. Wang, Y. Zhou, Q. Yao, L. Ling, K. Cao, Y. Liu, Y. Bu, Y. Chen, W. Wu and W. Sun, *Front. Environ. Sci. Eng.*, 2014, 9, 545–553.
- 30 Y. Liu, Y. Zhou, Q. Yao, J. Huang, G. Liu, H. Wang, K. Cao, Y. Chen, Y. Bu, W. Wu and W. Sun, *J. Appl. Polym. Sci.*, 2014, **131**, 39792(1)–39792(12).
- 31 B. Senthilmurugan, B. Ghosh, S. Kundu and B. Kameshwari, *Pet. Sci. Technol.*, 2011, **29**, 2077–2085.
- 32 C. Fu, Y. Zhou, H. Xie, W. Sun and W. Wu, *Ind. Eng. Chem. Res.*, 2010, **49**, 8920–8926.
- 33 Y. Chen, Y. Zhou, Q. Yao, Y. Bu, H. Wang, W. Wu and W. Sun, *Desalin. Water Treat.*, 2014, 1–11.
- 34 T. Chen, A. Neville, K. Sorbie and Z. Zhong, *Chem. Eng. Sci.*, 2009, **64**, 912–918.
- 35 Z. Liu, S. Wang, L. Zhang and Z. Liu, *Desalination*, 2015, **362**, 26–33.

- 36 C. Wang, S. P. Li and T. D. Li, *Desalination*, 2009, 249, 1–4.
- 37 Wang, Polym. Polym. Compos., 2013, 21, 449–456.
- 38 C. Wang, T. Shen, S. Li and X. Wang, *Desalination*, 2014, **348**, 89–93.
- 39 M. Dietzsch, M. Barz, T. Schüler, S. Klassen, M. Schreiber, M. Susewind, N. Loges, M. Lang, N. Hellmann, M. Fritz, K. Fischer, P. Theato, A. Kühnle, M. Schmidt, R. Zentel and W. Tremel, *Langmuir*, 2013, 29, 3080–3088.
- 40 S. A. Haladu and S. A. Ali, J. Polym. Sci. Part A Polym. Chem., 2013, 51, 5130–5142.
- 41 S. A. Ali and S. A. Haladu, *Polym. Int.*, 2014, **63**, 1682–1690.
- 42 P. Shakkthivel, R. Sathiyamoorthi and T. Vasudevan, *Desalination*, 2004, **164**, 111–123.
- 43 K. Chauhan, R. Kumar, M. Kumar, P. Sharma and G. S. Chauhan, *Desalination*, 2012, **305**, 31–37.
- 44 G. Wang, L. Li, J. Lan, L. Chen and J. You, J. Mater. Chem., 2008, 18, 2789.
- 45 US Patent 2014/0319067 A1, 2014.