Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2015

Carbon source		Nutrients and Iron		Trace Metals	
Starch	238.1	Urea	179.0	Cr(NO ₃) ₃ ·9H ₂ O	1.50
Milk Power	226.7	NH ₄ Cl	24.88	CuCl ₂ ·2H ₂ O	1.05
Yeast	101.9	MgHPO ₄ ·3H ₂ O	56.62	MnSO ₄ ·H ₂ O	0.21
Peptone	33.97	KH ₂ PO ₄	45.66	NiSO ₄ ·6H ₂ O	0.66
Na-acetate 3H ₂ O	256.9	FeSO ₄ ·7H ₂ O	11.32	PbCl ₂	0.20
				ZnCl ₂	0.41

Table S1. Composition of synthetic wastewater feed in mg/L.

Table S2. Characteristics of MF membranes used in AnMBR biofouling experiments.

	PVDF MF	PES MF
Rejection size (µm)	0.3	0.2
Material (polymer)	Polyvinylidene fluoride	Polyethersulfone
Surface roughness value (rms)		
- 3 x 3 μm Area	94.5	38.1
- 30 x 30 μm Area	0.423	0.348
Contact Angle	77°	32°
Zeta Potential (mV)	-18	+19

Figure S1. COD concentrations in AnMBR influent and effluents and removal efficiencies for (A) UA Run 1, (B) UA Run 2, (C) CSTR Run 1, and (D) CSTR Run 2.

Figure S2. Transmembrane Flux and Transmembrane Pressure (TMP) across AnMBR PVDF and PES MF membranes for (A) UA Run 1, (B) UA Run 2, (C) CSTR Run 1, and (D) CSTR Run 2.

Figure S3. Biogas volume and composition in AnMBRs for (A) UA Run 1, (B) UA Run 2, (C) CSTR Run 1, and (D) CSTR Run 2.

Biogas Composition Calculations

Assuming: Peptone = 100% Protein Starch = 100% Carbohydrate Milk Powder = 41.7% Carbohydrate, 29.7% Lipids, 28.6% Protein Yeast Extract = 46.1% Carbohydrate, 9.0% Lipids, 44.9% Protein

Considering typical chemical formulas (Rittmann and McCarty, 2012)

Carbohydrates: $C_6H_{10}O_5$	$f_s = 0.28$	$f_e = 0.72$
Proteins: $C_{16}H_{24}O_5$	$f_s = 0.08$	$f_e = 0.92$
Lipids: $C_{16}H_{32}O_2$	$f_s = 0.06$	$f_e = 0.94$
Acetate: $C_2H_4O_2$	$f_s = 0.11$	$f_e = 0.89$

and using:

 $C_wH_xO_yN_z + aO_2 \rightarrow bCO_2 + cH_2O$

The overall synthetic wastewater composition (800 mg/L as COD) is calculated:

50% Carbohydrate, 19% Protein, 10% Lipids, and 21% Acetate

Based on the generalized stoichiometric equation and assuming $f_s + f_e = 1$ (Rittmann and McCarty, 2012, eqn. 13.5):

 $C_wH_xO_vN_z + aH_2O \rightarrow bCH_4 + cCO_2 + dC_5H_7O_2N + eNH_4 + gHCO_3^-$

For each M compound:

	$\underline{M CH}_4$	MCO_2
Carbohydrates:	2.16	2.50
Proteins:	7.60	3.35
Lipids:	9.20	1.52
Acetate:	0.89	0.93

Therefore 0.815 M of CO2 will be produced for each 1 M of CH₄ for this synthetic wastewater.

Average biogas production from reactors (measured):

	$\underline{\text{UA}}(\text{mL/d})$	<u>CSTR (mL/d)</u>
Captured CH ₄	224	257
Effluent CH ₄	59 (0.325 mL / 10 mL)	56 (0.311 mL / 10 mL)
Captured CO ₂	25	7
Effluent CO ₂	207 (1.15 mL / 10 mL)	$202 \ (1.12 \ mL \ / \ 10 \ mL)$

Based on the ideal gas law, total produced CH₄ and CO₂ could be determined:

	<u>UA</u>	<u>CSTR</u>
CH ₄	12.6 mM/d	14.0 mM/d
CO_2	10.3 mM/d	9.5 mM/d
CO_2/CH_4	0.817	0.679
CH ₄	0.202 g / d	0.224 g / d

Theoretical methane production

Maximum theoretical methane production was calculated based on:

 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ $(16g) + (64g) \rightarrow (44g) + (36g)$

 $0.25 \text{ g CH}_4 = 1 \text{ g COD}$ Therefore ideally at STP, 1 g COD = 350 mL CH₄.

COD Converted to biomass

Biomass wasted = 0.0235 g total per day (4 g/L average and SRT of 325-355 d)

Average microorganism decay rate $b_a = 0.03$ (Rittmann and McCarty, 2012)

COD conv. to biomass = 1.42 g COD / g MLSS (Rittmann and McCarty, 2012)

Generated biomass = 0.0235 g + 0.03 x 4 g/L x 2 L (reactor volume) = 0.264 g / d

COD converted to biomass = COD $_{\text{biomass}}$ = 0.375 g COD / d

Total COD Mass Balance

 $COD_{influent} = COD_{effluent} + COD_{biomass} + COD_{methane}$

COD _{influent} = 1.44 g COD / d

UA COD _{effluent} = 0.115 g COD / d (92% average removal) CSTR COD _{effluent} = 0.086 g COD / d (94% average removal)

UA COD _{methane} = 1.44 - 0.115 - 0.375 = 0.950 g COD / d (theoretical)

CSTR COD _{methane} = 1.44 - 0.086 - 0.375 = 0.979 g COD / d (theoretical)

UA COD _{methane} = 0.806 g COD (measured) CSTR COD _{methane} = 0.896 g COD / d (measured)