Supporting Information

Archaeal Ammonium Oxidation Coupled with Bacterial Nitrite Oxidation in a Simulated Drinking Water Premise Plumbing System

Gem E. Santillana^{1,2,3}, Heidi J. Smith^{1,4}, Mark Burr¹, , and Anne K. Camper^{1,5*}

¹Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717

²Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717

³ Current address: Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695

⁴Department of Land Resources and Environmental Science, Montana State University, Bozeman, MT 59717

⁵Department of Civil Engineering, Montana State University, Bozeman, MT 59717

Eight pages, one figure, four tables.

BACCompositePMA BACJune BACMay CopperBiofilmJune5 CopperBiofilmJune6 CopperBiofilmJune7 CopperBiofilmJune8 CopperBiofilmMay5 CopperBiofilmMay6 CopperBiofilmMay7 CopperBiofilmMay8 CopperBulkJune5 CopperBulkJune6 CopperBulkJune7 CopperBulkJune8 CopperBulkMay5 CopperBulkMay6 CopperBulkMay7 CopperBulkMay8 PVCBiofilmJune1 PVCBiofilmJune2 **PVCBiofilmJune3** PVCBiofilmJune4 PVCBiofilmMay1 PVCBiofilmMay2 PVCBiofilmMay3 PVCBiofilmMay4 PVCBulkJune1 PVCBulkJune2 PVCBulkJune3 PVCBulkJune4 PVCBulkMay1 PVCBulkMay2 PVCBulkMay3 PVCBulkMay4

Supporting Information Figure 1. DGGE from repeated samplings of the copper and PVC reactors. "Bulk" samples refer to reactor effluent, which was not further analyzed.

Table S1. Specific information and references for PCR, qPCR and fluorescence in situ hybridization methods.

Endpoint PCR

Bacterial amoA

PCR:		
amoA1-F	5' GGGGTTTCTACTGGTGGT 3'	Rotthauwe et al., 1997
amoA2-R	5' CCCCTCKGSAAAGCCTTCTTC 3'	

Thermal cycling conditions:

5 min at 94°C; pause at 80°C to add polymerase; 42 cycles consisting of 60 s at 94°C, 90 s at 60°C, 90 s at 72°C; a final cycle of 10 min at 72°C.

Bacterial nxrA

PCR:		
nxrAF	5' CAGACCGACGTGTG CGAAAG 3'	Wertz et al., 2008
nxrAR	5' TCCACAAGGAACGG AAGGTC 3'	

Thermal cycling conditions:

3 min at 94°C; 35 cycles consisting of 30 s at 94°C, 45 s at 55°C, 45 s at 72°C; a final cycle of 5 min at 72°C.

Bacterial nxrB

PCR:		
nxrBF1	5' TACATGTGGTGGAACA 3'	Maixner, 2009
nxrBR6	5' CGGTTCTGGTCRATCA 3'	

Thermal cycling conditions:

4 min at 95°C; 35 cycles consisting of 40 s at 95°C, 30 s at 56.2°C, 60 s at 72°C; a final cycle of 10 min at 72 °C.

Bacterial 16S rRNA gene

PCR:		
1055F	5'ATGGCTGTCGTCAGCT 3'	Ferris et al., 1996
1392R	5' ACGGGCGGTGTGTAC 3'	

Thermal cycling conditions:

2 min at 94°C; 30 cycles of 45 s at 94°C, 45 s at 55°C, 45 s at 72°C; and a final cycle of 7 min at 72°C.

PCR-DGGE:		
1055F	5'ATGGCTGTCGTCAGCT 3'	Ferris et al., 1996
1392R-GC	5' <u>CGCCCGCCGCGCCCCGCGCCCCGG</u>	CCCGCCGCCCCCGCCCC-
	ACGGGCGGTGTGTAC 3' (GC clamp un	nderlined, Ferris et al., 1996)

Thermal cycling conditions: 2 min at 94°C; 30 cycles of 45 s at 94°C, 45 s at 55°C, 45 s at 72°C; and a final cycle of 7 min at 72°C.

Archaeal amoA

PCR:		
arch-amoAF	5' STAATGGTCTGGCTTAGACG 3'	Francis et al., 2005

arch-amoAR 5' GCGGCCATCCATCTGTATGT 3'

Thermal cycling conditions:

95°C for 5 min; 30 cycles consisting of 94°C for 45 s, 53°C for 60 s, and 72°C for 60 s; and 72°C for 15 min.

PCR-DGGE:

Arch-amoA-for	5' CTGAYTGGGCYTGGACATC 3'	Wuchter et al., 2006
Arch-amoA-rev-GC	5°CGCCCGCCGCGCCCCGCGCCCGGCCC	<u>GCCGCCCCCGCCCC-</u>
	TTCTTCTTTGTTGCCCAGTA 3' (GC clam	p underlined, Ferris et al., 1996)

Thermal cycling conditions:

95°C for 10 min; 50 cycles consisting of 95°C for 20 s, 53°C for 45 s, and 72°C for 60 s.

Archaeal 16S rRNA gene

PCR:

21F	5'TTCCGGTTGATCCYGCCGGA3'	DeLong, 1992
1492R	5'GGTTACCTTGTTACG ACTT3'	

Thermal cycling conditions:

30 cycles consisting of 95° C for 1.5 min, 55°C for 1.5 min, and 72° C for 1.5 min .

PCR-DGGE (screening clones):

 ARC-915R
 5'GTGCTCCCCGCCAATTCCT 3'
 Casamayor et al., 2000

 ARC-344F-GC
 5' CGC CCG CCG CGC CCC GCG CCC GCCC CCG CCC CCGCCC G

 ACGGGGYGCAGCAGCGCGCA 3' (GC clamp underlined)

Thermal cycling conditions:

94°C for 5 min; 30 cycles consisting of 94°C for 60 s, 55°C for 60 s, 72°C for 60 s; and 72°C for 9 min.

Sequencing of Amplicons

M13F 5'-TGTAAAACGACGGCCAGT-3'

Quantitative PCR (qPCR)

Bacterial 16S rRNA gene

qPCR:		
338F	5' ACTCCTACGGGAGGCAGCAG 3'	Einen et al.,2008
518R	5' ATTACCGCGGCTGCTGG3'	

Thermal cycling conditions: 95°C for 15 min; 45 cycles of 94°C for 15 s, 61°C for 30 s, 72°C for 30 s.

Archaeal 16S rRNA gene

qPCR:		
931F	5' AGGAATTGGCGGGGGGGGGAGC A3'	Einen et al., 2008
m1100R	5' BGGGTCTCGCTC 3'	

Thermal cycling conditions: 95°C for 15 min; 45 cycles of 94°C for 15 s, 64°C for 30 s, 72°C for 30 s. Bacterial amoA gene qPCR

amoA1-F amoA2-R	5' GGGGTTTCTACTGGTGGT 3' 5' CCCCTCKGSAAAGCCTTCTTC 3'	Rotthauwe et al., 1997
Thermal cycling condi 95°C for 15 min; 45 c	itions: ycles of 94°C for 15 s, 61°C for 30 s, 72°C for 30 s.	
Archaeal amoA gene		
qPCR: Arch-AmoA-for Arch-AmoA-rev	5' CTGAYTGGGCYTGGACATC 3' 5' TTCTTCTTTGTTGCCCAGTA 3'	Wuchter et al., 2006
Thermal cycling condi 95°C for 15 min; 45 c	itions: ycles of 94°C for 15 s, 64°C for 30 s, 72°C for 30 s.	
Fluorescent <i>in-situ</i> H	ybridization (FISH)	
DOPE- EUB338	5'GCTGCCTCCCGTAGGAGT 3'	Stoecker et al., 2010
Targets bacteria, one C	Cy3 label on each end	Amann et al., 1990
ARCH 915	5' GTGCTCCCCCGCCAATTCCT 3'	Stahl and Amann, 1991
Targets archaea, 5' Cy	75 label	
DOPE-NONEUB	5'ACTCCTACGGGAGGCAGC 3'	Wallner et al., 1993
Negative control, non	EUB, one Cy3 label on each end	
NONSENSE	5' AGAGAGAGAGAGAGAGAGAG 3'	Hatzenpichler et al., 2008

Negative control, nonsense, 5' Cy5 label

Rotthauwe, J. H.; Witzel, K. P.; Liesack, W. The ammonia monooxygenase structural gene *amo*A as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. *Appl. Environ. Microbiol.* **1997**, *63*, 4704-4712.

Wertz, S.; Poly, F.; Le Roux, X.; Degrange, V. Development and application of a PCRdenaturing gradient gel electrophoresis tool to study the diversity of *Nitrobacter*-like *nxrA* sequences in soil. *FEMS Microbiol. Lett.* **2008**, *63*, 261-271.

Maixner, F.M. The ecophysiology of nitrite-oxidizing bacteria in the genus *Nitrospira*: novel aspects and unique features. PhD Thesis. 2009. http://othes.univie.ac.at/5088/1/2009-04-14 0409617.pdf accessed January 2011.

Ferris, M. J.; Muyzer, G.; Ward, D. M. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hotspring microbial mat community. *Appl. Environ. Microbiol.* **1996**, *62*, 340-346.

Francis, C. A.; Roberts, K. J.; Beman, J. M.; Santoro, A. E.; Oakley, B. B. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. *Proc. Nat. Acad. Sci. USA.* **2005**, *102*, 14683-14688.

Wuchter, C.; Abbas, B.; Coolen, M. J.; Herfort, L.; van Bleijswijk, J.; Timmers, M.; Strous, M.; Teira, E.; Herndl, G. J.; Middelburg, J. J.; Schouten, S.; Sinninghe Damste, J.S. Archaeal nitrification in the ocean. *Proc. Nat. Acad. Sci. USA* **2006**, *103*(3), 12317-12322.

DeLong, E. F. Archaea in coastal marine environments. *Proc. Nat. Acad. Sci. USA* **1992**, *89*, 5685-5889.

Einen J.; Thorseth, I. H.; Ovreås, I. Enumeration of Archaea and Bacteria in seafloor basalt using real-time quantitative PCR and fluorescence microscopy. *FEMS Microbiol. Lett.* **2008**, *282*,182-187.

Casamayor, E.O.; Schäfer, H.; Bañeras, L.; Pedrós-Alió C.; Muyzer, G. Identification of and spatio-temporal differences between microbial assemblages from two neighboring sulfurous lakes: comparison by microscopy and denaturing gradient gel electrophoresis. *Appl. Environ. Microbiol.*, **2000**, *66*, 499-508.

Stoecker, K.; Dorninger, C.; Daims, H.; Wagner, M. Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) improves signal intensity and increases rRNA accessibility. *Appl. Environ. Microbiol.* **2010**, *76* (3), 922-926.

Amann, R.I.; Binder, B.J.; Olson, R.J.; Chisholm, S.W; Devereaux, R.; Stahl, D.A. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. *Appl. Environ. Microbiol.* **1990**, *56* (6), 1919-1925.

Stahl, D.A.; Amann, R. Development and application of nucleic acid probes. In *Nucleic Acid Techniques in Bacterial Systematics*; Stackebrandt, E., Goodfellow., M., Eds.; John Wiley & Sons Ltd.: Chichester, UK 1991; pp. 205-248.

Wallner, G., Amann ,R.; Beisker, W. Optimizing fluorescent in situ hybridization with rRNAtargeted oligonucleotide probes for flow cytometric identification of microorganisms. *Cytometry*. **1993**, *14*: 136-143.

Hatzenpichler, R. E.; Lebedeva, V.; Spieck, E.; Stoecker, K.; Richter, A.; Daims, H.; Wager, M. A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot springs. *Proc. National Academy of Sciences, USA* **2008**, *105* (5), 2134-2139.

Accession	Table	Band	Description	Date Submitted
JQ406488	2	9	bacterial DGGE band, 16S rDNA	11-Jan-12
JQ406489	2	1	bacterial DGGE band, 16S rDNA	11-Jan-12
JQ406490	1	1	bacterial DGGE band, 16S rDNA	11-Jan-12
JQ406491	1	9	bacterial DGGE band, 16S rDNA	11-Jan-12
JQ406492	2	2	bacterial DGGE band, 16S rDNA	11-Jan-12
JQ406493	1	10	bacterial DGGE band, 16S rDNA	11-Jan-12
JQ406494	2	3	bacterial DGGE band, 16S rDNA	11-Jan-12
JQ406495	2	11	bacterial DGGE band, 16S rDNA	11-Jan-12
JQ406496	1	3	bacterial DGGE band, 16S rDNA	11-Jan-12
JQ406497	1	11	bacterial DGGE band, 16S rDNA	11-Jan-12
JQ406498	2	4	bacterial DGGE band, 16S rDNA	11-Jan-12
JQ406499	2	12	bacterial DGGE band, 16S rDNA	11-Jan-12
JQ406500	1	12	bacterial DGGE band, 16S rDNA	11-Jan-12
JQ406501	2	5	bacterial DGGE band, 16S rDNA	11-Jan-12
JQ406502	2	13	bacterial DGGE band, 16S rDNA	11-Jan-12
JQ406503	NA	13	bacterial DGGE band, 16S rDNA	11-Jan-12
JQ406504	2	6	bacterial DGGE band, 16S rDNA	11-Jan-12
JQ406505	2	14	bacterial DGGE band, 16S rDNA	11-Jan-12
JQ406506	1	6	bacterial DGGE band, 16S rDNA	11-Jan-12
JQ406507	1	14	bacterial DGGE band, 16S rDNA	11-Jan-12
JQ406508	2	7	bacterial DGGE band, 16S rDNA	11-Jan-12
JQ406509	2	15	bacterial DGGE band, 16S rDNA	11-Jan-12
JQ406510	1	7	bacterial DGGE band, 16S rDNA	11-Jan-12
JQ406511	NA	15	bacterial DGGE band, 16S rDNA	11-Jan-12
JQ406512	2	16	bacterial DGGE band, 16S rDNA	11-Jan-12
JQ406513	1	8	bacterial DGGE band, 16S rDNA	11-Jan-12
JQ406514		10	bacterial DGGE band, 16S rDNA	11-Jan-12
JQ406515	NA	2	bacterial DGGE band, 16S rDNA	11-Jan-12
JQ406516	1	5	bacterial DGGE band, 16S rDNA	11-Jan-12
JQ406517			archaeal 16S rDNA, 219 bp, qPCR std.	11-Jan-12
JQ406518			bacterial 16S rDNA, 190 bp, qPCR std.	11-Jan-12
JQ406519			archaeal amoA, 256 bp, qPCR std.	11-Jan-12
JQ406520			archaeal <i>amoA,</i> 617 bp	11-Jan-12
JQ717297			lower DGGE band, archaeal amoA, 254 bp	16-Jul-12
JQ717298			upper DGGE band, archaeal amoA, 253 bp	16-Jul-12
JQ717299			archaeal 16S rDNA clone, 710 bp	16-Jul-12

Table S2. Accession numbers deposited in the NCBI database. Table and Band refer to DGGE bands sequenced and reported in Tables 1 and 2. Three bands (NA) were sequenced but not reported in the tables.

Table S3. Taxonomic identity of the bands excised from the 16S rDNA PCR-DGGE profile of the biofilm community obtained from the copper coupon. Bands 4, 13, and 15 could not be reamplified to obtain DNA sequence information.

Band number	GenBank accession (this study)	Nearest taxonomically identified relatives and GenBank accession numbers	Identity comparisons, % similarity
1	JQ406490	Uncultured <i>Acidobacterium</i> sp. clone EU403975	318/319 (99%)
2	JQ406515	Sterolibacterium strain TKU1 AM990454	318/320 (99%)
3	JQ406496	Uncultured Gemmata sp. clone JX114456	303/319 (95%)
5	JQ406516	Uncultured Gemmata sp. clone JX114456	316/319 (99%)
6	JQ406506	Uncultured <i>Acidobacterium</i> sp. clone EU403975	221/235 (94%)
7	JQ406510	Hylemonella gracilis strain AB539995	308/315 (98%)
8	JQ406513	Uncultured Nitrospirae clones AB252937, AB252938 Uncultured <i>Nitrospira</i> sp. clone JQ346777	320/320 (100%) 318/318 (100%)
9	JQ406491	Uncultured Bacteroidetes clone EU633829 Uncultured Chloroflexi clone EU633735	223/225 (99%) 223/225 (99%)
10	JQ406493	Uncultured Rhodospiralles clones KJ600189, KJ600316, KJ600590	315/321 (98%)
11	JQ406497	Uncultured Gemmatimonadaceae clone HQ044269, HQ042984	308/323 (95%)
12	JQ406500	Uncultured Rhodospillales clones KJ600189, KJ600316, KJ600590	293/322 (91%)
14	JQ406507	Uncultured planctomycete clones JN656770 JN656908	271/325 (83%)

Table S4. Taxonomic identity of the bands excised from the 16S rDNA PCR-DGGE profile of the biofilm community obtained from the PVC coupon. Bands 8 and 10 could not be reamplified to obtain DNA sequence information.

Band number	GenBank accession (this study)	Nearest taxonomically identified relatives and GenBank accession numbers	Identity comparisons, % similarity
1	JQ406489	Uncultured planctomycete clone FM945332	314/321 (98%)
2	JQ406492	Uncultured <i>Flavobacterium</i> sp. clone GU230410	313/323 (97%)
3	JQ406494	Uncultured <i>Nitrospira</i> sp. clones GQ176326, GQ421145, JQ278935, JQ278947	315/317 (99%)
4	JQ406498	Uncultured Chloroflexi clone FM 253630	287/307 (93%)
5	JQ406501	Uncultured <i>Nitrospira</i> sp. clones GQ176345, GQ452974, JQ278818, JQ278967	307/325 (94%)
6	JQ406504	Uncultured Comamonadaceae clones JN125747, JN125748, JN125752	312/319 (98%)
7	JQ406508	Uncultured Comamonadaceae clones JN125747, JN125748, JN125752	306/319 (96%)
9	JQ406488	Uncultured Desulfuromonadales clone AM935314	314/323 (97%)
11	JQ406495	Uncultured <i>Nitrospira</i> sp. clones AF351228, AJ582041, HE974818	319/322 (97%)
12	JQ406499	Uncultured <i>Nitrospira</i> sp. clones GQ176345, JQ278818, JQ278967	322/322 (100%)
13	JQ406502	Uncultured Chloroflexi clone JF707623	259/324 (80%)
14	JQ406505	Uncultured planctomycete clone EU373997	304/322 (94%)
15	JQ406509	Uncultured Verrucomicrobiales clone FJ542937	204/234 (87%)
16	JQ406512	Uncultured Chloroflexi clone EU403822	245/262 (94%)