Nanocrystal Superlattices that Exhibit Improved Order On Heating: An Example of Inverse Melting?

Yixuan Yu,^a Avni Jain,^a Adrien Guillaussier,^a Vikas Reddy Voggu,^a Thomas M. Truskett,^a Detlef-M. Smilgies,^b and Brian A. Korgel^{*a}

^a McKetta Department of Chemical Engineering, Texas Materials Institute, Center for Nano- and Molecular Science and Technology, The University of Texas at Austin, Austin, TX 78712-1062, USA; Email: korgel@che.utexas.edu

^b Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY4853, USA.

Supporting Information

Volume fraction occupied by ligand in superlattices of 1.66 nm diameter octadecanethiolcapped Au nanocrystals. Using the BCC lattice parameter *a*, measured by GISAXS and the average Au core diameter measured by SAXS, V_{core} , the volume fraction occupied by the Au nanocrystal cores is: $V_{core}/V_{total} = 2 * (\frac{4}{3} * \pi * R^3)/a^2 = 5.6\%$. If the remaining volume in the superlattice is occupied by capping ligands (94.4%), the weight fraction of Au in the nanocrystal assemblies is: $W_{core}/W_{total} = (V_{core} * \rho_{Au})/(V_{core} * \rho_{Au} + V_{ligand} * \rho_{ligand}) = 60\%$. This is consistent with thermogravimetric analysis (TGA, Fig. S1). TGA was performed on a Mettler Toledo TGA-1, heating the nanocrystals in a 70 µL alumina crucible (Mettler Toledo) from 25°C to 800°C at a heating rate of 20°C/min. The sample was then held at 800°C for 30 min. The measurements were performed under 50 mL/min nitrogen gas flow. The weight loss of ~40% corresponds to the loss of organic ligands.

Figure S1. TGA of size-selected octadecanethiol-capped Au nanocrystals (average diameter of 1.66 ± 0.30 nm).

TEM images of the octadecanethiol-capped Au nanocrystals used in the study. Figure S2 shows TEM images of size-selected octadecanethiol-capped Au nanocrystal at high (top) and low (bottom) magnifications. The nanocrystals exhibit diameters less than 2 nm, consistent with sizing carried out be SAXS. Figure S3 shows TEM images of octadecanethiol-capped Au nanocrystals prior to size-selective precipitation. The particle size distribution is noticeably broader.

Figure S2. TEM images of size-selected octadecanethiol-capped Au nanocrystals.

Figure S3. TEM image of octadecanethiol-capped Au nanocrystals prior to size-selective precipitation.

SAXS of octadecanethiol-capped Au nanocrystals without size selective precipitation dispersed in toluene. Solution Small-Angle X-ray Scattering (SAXS) data of octadecanethiol-capped Au nanocrystal prior to size-selective precipitation are shown in Figure S4, in which top figure is plot of intensity against q and bottom one is porod plot of the data. Fitting the solution SAXS data to a model of a collection of non-interacting solid spheres with a Gaussian size distribution reveals that these nanocrystals have an average diameter of 1.75 ± 0.35 nm (20% polydispersity).

Figure S4. Solution SAXS data (black cycles) and the best fitting (red curve) of octadecanethiol-capped Au nanocrystals without size-selective precipitation. Top: Log of intensity vs q, Bottom: Porod plot.

Structure factor calculations. Structure factor, S(q), could be calculated from scattering profile I (q) and form factor P(qR) determined in solution SAXS:

$$I(q) = n * P(qR) * S(q),$$

hence,
$$S(q) = \frac{I(q)}{n * P(qR)}$$

The Normalization factor n, is determined using the factor that

$$\langle S(q) \rangle = N^{-1} * \sum_{i,k}^{N} \langle e^{-iq(R_j - R_k)} \rangle$$

approaches a value of 1 at high q.^{1,2} In this work, we normalize our S(q) by assuming $S(q_{max})=1$. Figure S5 shows structure factors of Au nanocrystal superlattice during one heating-cooling cycle, plotted in 3d fashion.

Figure S5. Structure factors of Au nanocrystal superlattice in a heating-cooling cycle.

References:

- 1. Cusack, N. E. The physics of structurally disordered matter: an introduction. *Philadelphia: Hilger*, **1987**.
- 2. Korgel, B. A.; Fitzmaurice, D. Small-angle x-ray-scattering study of silver-nanocrystal disorder-order phase transitions. *Phys. Rev. B* 1999, *59*, 14191-14201.