Ruthenium Catalysts for Water Oxidation Involving Tetradentate Polypyridine-type Ligands

Lianpeng Tong, Ruifa Zong, Rongwei Zhou, Nattawut Kaveevivitchai,

Gang Zhang and Randolph P. Thummel*

Department of Chemistry, 136 Fleming Building, University of Houston,

Houston, TX 77204-5003

thummel@uh.edu

Supporting Information	Page
Figure S1-3 ¹ H NMR spectra	S2-4
Figure S4-5 UV-vis spectra	S3-4
Table S2 Crystal data	S5
Figure S6-7 Electrochemical waves	S5-6
Figure S8-12. CAN-promoted O ₂ evolution plots	S7-9
Figure S13-14 Spectrum of dynamic light scatting (DLS)	S9-10
Fiure S15-16 Mass spectra	S10-11

Figure S2. ¹H NMR of $6(Cl)_2$ in D₂O with or without acetonitrile (5%, v/v).

Figure S3. ¹H NMR of 3(Cl)₂ in D₂O with or without acetonitrile (5%, v/v).

Figure S4. Electronic absorption spectra of complexes $4b(Cl)_2$ and $6(Cl)_2$ (2 × 10⁻⁵ M) in water at room temperature.

Complexes	Absorbance λ_{max} , nm (log ε)		
$3(\mathrm{PF}_6)_2{}^a$	259(4.71), 281(4.87), 313(4.78), 445(3.61), 479(3.67), 514(3.71), 580(3.81)		
$4\mathbf{a}(\mathrm{PF}_6)_2{}^b$	332(4.47), 423(3.73), 460(sh, 3.67), 488(3.83), 547(3.88), 592(sh, 3.58)		
$4b(Cl)_2^c$	278(4.69), 314(4.54), 336(4.52), 407(3.59), 484(sh, 3.63), 540(3.80)		
$5(\mathrm{PF}_6)_2{}^b$	345(4.60), 405(3.47), 446(3.52), 471(3.76), 536(3.78)		
6 (Cl) ₂ ^c	282(4.58), 300(4.34), 313(4.33), 340(4.34), 358(4.43), 472(3.69), 564(3.51)		

Table S1. Electronic absorption data for Ru^{II} complexes at room temperature.

^{*a*} Cited from ref 5a, measured in CH₂Cl₂. ^{*b*} Cited from ref 5b, measured in acetone; sh = shoulder. ^{*c*} This work, 2×10^{-5} M in water.

Figure S5. Electronic absorption spectra of complexes $6(Cl)_2$ (2 x 10⁻⁵ M) in HNO₃ (pH = 1) and phosphate buffer (pH = 10.3).

-	formula	C _{37.35} H _{42.46} Cl ₂ N ₆ O _{3.88} Ru	
	weight	809.48	
	space group	P -1	
	a/Å	10.4996(4)	
	b/Å	13.3012(5)	
	c/Å	3.4802(6)	
	α/deg	80.434(2)	
	β/deg	82.981(2)	
	γ/deg	86.221(2)	
	$V/Å^3$	1840.52	
	Ζ	2	
	$D_c/\mathrm{g~cm^{-3}}$	1.461	
	<i>T</i> /K	123	
	<i>F</i> (000)	835	
	wavelength(MoKR)/Å	1.54178	
	refl. collected	8829	
	Goodness-of-fit on F ²	1.096	
	$R_I^a [I > 2\sigma(I)]$ (all)	0.0395	
	$wR_{2^{b}}[I > 2\sigma(I)]$ (all)	0.1039	
${}^{a}R_{I} = \Sigma(F_{o} - F_{c}) / \Sigma F_{o} ; {}^{b}wR_{2} = \{\Sigma[w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma[w(F_{o}^{2})^{2}]\}^{1/2}$			

Table S2. Summary of the crystal data for $6(Cl)_2$.

Figure S6. CV of $6(ClO_4)_2$ (1 mM, left) and $4b(PF_6)_2$ (1mM, right) in acetonitrile containing 0.1 M ⁿBu₄N(PF₆); glass carbon working electrode, scan rate = 100 mA/s.

Figure S7. CV (red curve) and SW (grey curve) of $4a(PF_6)_2 (0.25 \text{ mM}, \mathbf{a})$, $4b(PF_6)_2 (0.5 \text{ mM}, \mathbf{b})$, $5(PF_6)_2 (0.5 \text{ mM}, \mathbf{c})$, and $6(OCl_4)_2 (0.5 \text{ mM}, \mathbf{d})$ in CF₃CH₂OH/HNO₃ (20/80, pH =1); glass carbon working electrode, scan rate = 100 mA/s.

Figure S8. O_2 evolution vs time plots by **3** at various concentrations. Conditions: 0.2 M CAN in 10 mL HNO₃ (pH 1.0). Only one data point of every 35 recorded points is shown for clarity.

Figure S9. O_2 evolution vs time plots by **4a** at various concentrations. Conditions: 0.2 M CAN in 10 mL HNO₃ (pH 1.0). Only one data point of every 35 recorded points is shown for clarity.

Figure S10. O_2 evolution vs time plots by **4b** at various concentrations. Conditions: 0.2 M CAN in 10 mL HNO₃ (pH 1.0). Only one data point of every 35 recorded points is shown for clarity.

Figure S11. O_2 evolution vs time plots by **5** at various concentrations. Conditions: 0.2 M CAN in 10 mL HNO₃ (pH 1.0). Only one data point of every 35 recorded points is shown for clarity.

Figure S12. O_2 evolution vs time plots by **6** at various concentrations. Conditions: 0.2 M CAN in 10 mL HNO₃ (pH 1.0). Only one data point of every 35 recorded points is shown for clarity.

Figure S13. Raw spectrum of dynamic light scatting (DLS) showing no peak or spike corresponding the presence of particles were detected. Sample contains **3** (25 μ M) and CAN (10 mM) in pH = 1.0 HNO₃, mixed for 1 h before measurement.

Figure S14. Raw spectrum of dynamic light scatting (DLS) showing no peak or spike corresponding the presence of particles were detected. Note the fluctuation was due to dust. Sample contains **6** (5 μ M), [Ru(bpy)₃]Cl₂ (0.3 mM) and Na₂S₂O₈ (10 mM) in Na₂SiF₆/NaHCO₃ buffer (5 mL, pH 6.8, 0.01 M of Na₂SiF₆) and was irradiated for 10 min before measurement.

Figure S15. Mass spectra of 6 (in water).

Figure S16. Mass spectra of 6 (in water) after treated with 4 equivalent of CAN.