Electronic Supplementary Material (ESI) for Faraday Discussions. This journal is © The Royal Society of Chemistry 2015

Supplementary Information (SI)

for

Environmental potential of carbon dioxide utilization in the polyurethane supply chain

Niklas von der Assen, André Sternberg, Arne Kätelhön and André Bardow

Chair of Technical Thermodynamics RWTH Aachen University Schinkelstr. 8 52062 Aachen, Germany E-Mail: andre.bardow@ltt.rwth-aachen.de Tel: +49 241 80 95380 Fax: +49 241 80 92255

Contents

- 1. Process data for PUR supply chain
- 2. Additional figures for flexible PUR foam
- 3. Additional figures for rigid PUR foam

1. Process data for PUR supply chain

nate tion	Methylene diphenyl diisocyanate (MDI)	[8]						-30,03				-8,07		-156,22		-1991,1			-56,02	-126,02			250,26						
ls ocyol produc	Toluol-2.4- diisocyanate (TDI)	[8]													-92,14	-2302,9			-56,02	-126,02		174,16							
Methane supply	Natural gas	[]											-			-									0,480	1,310			_
	Sabatier reaction	[9]									-2,939	-0,506	-			-1,188									0.194			0000	2,939
s	ეილებე იმეთები მილება იმეთები მილება მილება მილება მილება მილება მილება მილება მილება მილება მილება მილება მილება მილება მი მი მი მი მი მი მი მი მი მი მი მი მი	[1]							-				-0,574			-0,464	7	-0,514							0.203				
synthesi	SMR+CO ₂ Import	[2]							1		-0,36		0,37			-1,0	-2,2											000	0,36
ethanol s	Steam methane Steam methane reforming (SMR)	[1]							1				-0,62			-0,468									0.33				
Σ	bəsɛd- _s OƏ	[4]							-		-1,375	-0,1875				-4,572									0,046			10.	1,375
ıpply	Steam methane Steam methane reforming	[2]										0,216	-0,724			-3,852	-8,144		-						0,414				
CO and H ₂ su	Dry reforming of methane	[3]									-0,910	0,050	-0,260			-7,305	1,770		-						0,053			010	0,910
	Reverse water gas shift	[2]									-1,581	-0,072				-5,848	-2,468		-						0,010				1,581
olyols	Polyether (PE) units					-	-0,026			-0,974																			
esis of p	Polycarbonate (PC) units					-	-0,026			-0,554	-0,420																		0,420
Synthe	Polyoxymethlyen POM) units					-	-0,026	-0,974																					
am uction	msoî AUA biçiA	[1]			-	-0,386										-1,5					-0,054		-0,616						
foa	mso1 AU9 eldixel7	[1]		-		-0,713										-1,5						-0,285			0.051				
			itputs	[6]				[kg]		e [kg]														al ix B)			ıtilized		
		Reference	Inputs and ou (Matrix A)	Flexible foam [k	Rigid foam [kg]	Polyol [kg]	Starter [kg]	Formaldehyde [Methanol [kg]	Propylene oxide	CO ₂ [kg]	H_2 [kg]	Methane [kg]	Benzene [kg]	Toluene [kg]	Electricity [MJ]	Heat [MJ]	Oxygen [kg]	CO [kg]	Nitric acid [kg]	Pentane [kg]	TDI [kg]	MDI [kg]	Environmenta impacts (Matr	GW [kg CO, eq.	FD [kg oil eq.]	Amount CO ₂ L	(Vector a)	CO ₂ [kg]

Table S 1 Process data for PUR supply chain

		al unit vector		1 rigid 0	0	0	0	0 0	0	0 0	0	0	0 0	0 0	0	0 0	0	0	0	0	0	0 0	0 0						
		Function		flex																									
	۲											-														/ar.	/ar.]
	ر0℃ vlqqus										-															/ar.	/ar.		
	Heat	E															~									0,068 \	0,029		1
	nsygen	[1]		ľ												-2,88		0,231											
	Electricity	5														-										0,133	0,039]
	Nitric acid	E		Γ																-						1,900	0,343		
	əuən∣o⊺	[8]													-											1,21	1,52		1
	əuəzuəg	[8]		Γ										٢												1,86	1,84		
	Starter	E		Γ			-																			8,37	3,47		1
	Propylene oxide	[8]								1																3,140	2,030		
	ənsînəq	[8]																			-					1,105	2,020		1
ylqqu	Formaldehyde (Oxide/ Formox)	[6]						1000	-1152,5							-765	5540									54			1
lehyde s	Formaldehyde (Silverpartial)	[6]						1000	-1205,5							-360	2631,5									134			1
Formalc	Formaldehyde (Silver total)	[6]						1000	-1205,5							-360	7756									134			
		Reference	Inputs and outputs	Flexible foam [kg]	Rigid foam [kg]	Polyol [kg]	Starter [kg]	Formaldehyde [kg]	Methanol [kg]	Propylene oxide [kg]	cO ₂ [kg]	H ₂ [kg]	Methane [kg]	Benzene [kg]	Toluene [kg]	Electricity [MJ]	Heat [MJ]	Oxygen [kg]	co [kg]	Nitric acid [kg]	Pentane [kg]	TDI [kg]	MDI [kg]	Environmental	impacts (Matrix B)	GW [kg CO ₂ eq.]	FD [kg oil eq.]	Amount CO ₂ utilized	

Table S 1 (continued) Process data for PUR supply chain

2. Additional figures for flexible PUR foam

Figure S 1 Minimum fossil depletion impacts for flexible PUR foam for a variable fossil depletion impact of hydrogen production. The solid lines refer to CO_2 captured from a coal-fired power plant. The lower bound of the global warming impact of PUR and the upper bound of the CO_2 utilization amount refer to an ideal CO_2 source (best case). The upper bound of the global warming impact of PUR and the lower bound of the CO_2 utilization amount refer to CO_2 capture from ambient air (worst case).

3. Additional figures for rigid PUR foam

Figure S 2 Minimum global warming impact for rigid PUR foams for variable amounts of CO_2 utilized. The transparent areas indicate the range for alternative CO_2 sources: lower bounds correspond to an ideal source, upper bounds correspond to CO_2 capture from ambient air, and the solid lines correspond to CO_2 capture from a coal-fired power plant.

Figure S 3 Minimum fossil depletion for rigid PUR foams for variable amounts of CO_2 utilized. The transparent areas indicate the range for alternative CO_2 sources: lower bounds correspond to an ideal source, upper bounds correspond to CO_2 capture from ambient air, and the solid lines correspond to CO_2 capture from a coal-fired power plant.

Figure S 4 Minimum global warming impacts for rigid PUR foam for a variable global warming impact of hydrogen production. The solid lines refer to CO_2 captured from a coal-fired power plant. The lower bound of the global warming impact of PUR and the upper bound of the CO_2 utilization amount refer to an ideal CO_2 source (best case). The upper bound of the global warming impact of PUR and the lower bound of the CO_2 utilization amount refer to CO_2 capture from ambient air (worst case).

Figure S 5 Minimum fossil depletion impacts for rigid PUR foam for a variable fossil depletion impact of hydrogen production. The solid lines refer to CO_2 captured from a coal-fired power plant. The lower bound of the global warming impact of PUR and the upper bound of the CO_2 utilization amount refer to an ideal CO_2 source (best case). The upper bound of the global warming impact of PUR and the lower bound of the CO_2 utilization amount refer to CO_2 capture from ambient air (worst case).

References

- Swiss Centre for Life Cycle Inventories, *ecoinvent Data V2.2*, 2010, <u>http://www.ecoinvent.org/</u>, Accessed Nov 13, 2014.
- 2 A. Sternberg and A. Bardow, *Energy Environ. Sci.*, 2015, **8**, 389–400.
- 3 CO2RRECT (ref. no. 033RC1006B), *CO2-Reaction using Regenerative Energies and Catalytic Technologies*, Final project report, 2014 (in German).
- 4 L. K. Rihko-Struckmann, A. Peschel, R. Hanke-Rauschenbach and K. Sundmacher, *Ind. Eng. Chem. Res.*, 2010, **49**, 11073–11078.
- 5 M. Aresta, A. Caroppo, A. Dibenedetto and M. Narracci, in *Environmental Challenges and Greenhouse Gas Control for Fossil Fuel Utilization in the 21st Century*, ed. M. Maroto-Valer, C. Song and Y. Soong, Springer US, 2002, pp. 331–347.
- 6 B. Müller, K. Müller, D. Teichmann and W. Arlt, *Chem. Ing. Tech.*, 2011, **83**, 2002–2013 (in German).
- 7 PE International, GaBi LCA Software and LCA Databases, 2012, <u>http://www.gabi-software.com/databases/-gabi-databases/</u>, Accessed Nov 13, 2014.
- 8 PlasticsEurope, *Eco-profiles*, <u>http://www.plasticseurope.org/plasticssustainability/eco-profiles.aspx</u>, 2014, <u>http://www.plasticseurope.org/plasticssustainability/eco-profiles.aspx</u>, Accessed 17 Dec 2014.
- G. Reuss, W. Disteldorf, A. O. Gamer and A. Hilt, in *Ullmann's Encyclopedia of Industrial Chemistry*,
 Wiley-VCH, Weinheim, 2012, vol. 15, ch. Formaldehyde, pp. 735–768.